ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

8-bit shift register with output register Rev. 4 — 25 February 2016

Product data sheet

1. **General description**

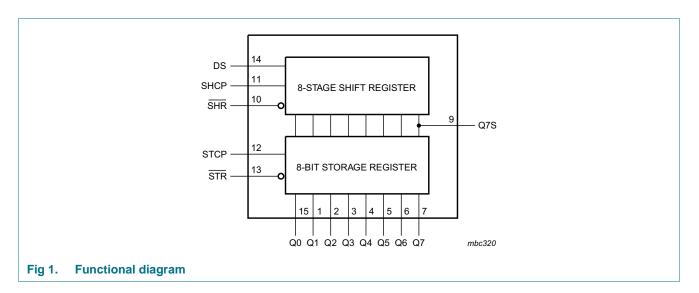
The 74HC594; 74HCT594 is an 8-bit serial-in/serial or parallel-out shift register with a storage register. Separate clock and reset inputs are provided on both shift and storage registers. The device features a serial input (DS) and a serial output (Q7S) to enable cascading. Data is shifted on the LOW-to-HIGH transitions of the SHCP input, and the data in the shift register is transferred to the storage register on a LOW-to-HIGH transition of the STCP input. If both clocks are connected together, the shift register will always be one clock pulse ahead of the storage register. A LOW level on one of the two register reset pins (SHR and STR) will clear the corresponding register. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of V_{CC}.

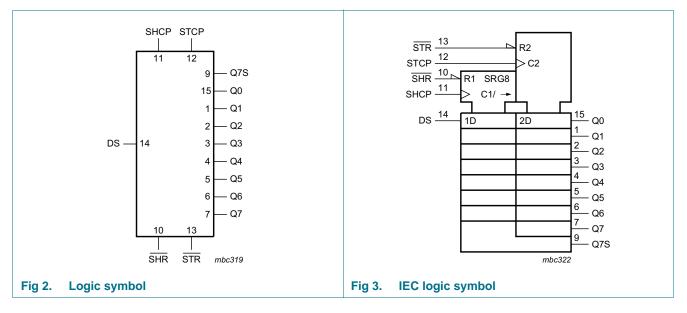
Features and benefits 2.

- Synchronous serial input and output
- Complies with JEDEC standard No.7A
- 8-bit parallel output
- Shift and storage registers have independent direct clear and clocks
- Independent clocks for shift and storage registers
- 100 MHz (typical)
- Input levels:
 - For 74HC594: CMOS level
 - For 74HCT594: TTL level
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

Applications 3.

- Serial-to parallel data conversion
- Remote control holding register

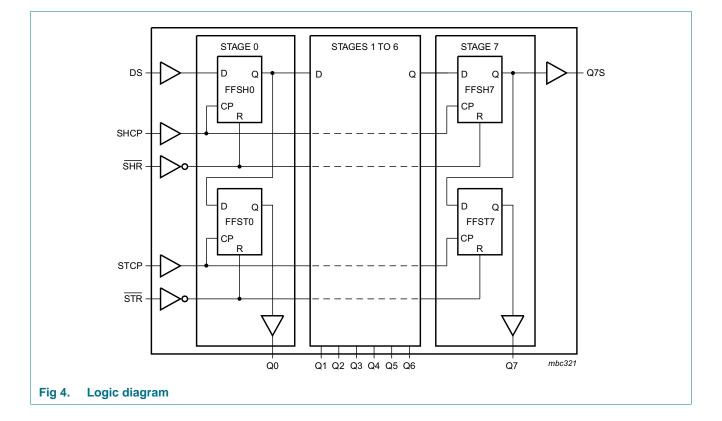


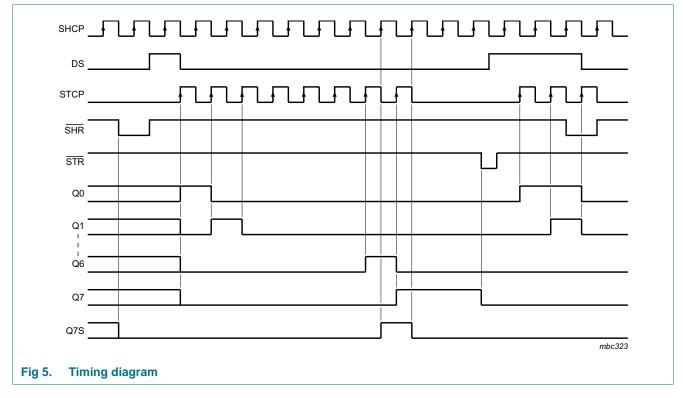

8-bit shift register with output register

Ordering information 4.

Table 1. Orde	ering information			
Type number	Package			
	Temperature range	Name	Description	Version
74HC594D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads;	SOT109-1
74HCT594D			body width 3.9 mm	
74HC594DB	–40 °C to +125 °C			SOT338-1
74HCT594DB			body width 5.3 mm	

5. Functional diagram





74HC_HCT594 **Product data sheet**

2 of 23

8-bit shift register with output register



8-bit shift register with output register

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7	15, 1, 2, 3, 4, 5, 6, 7	parallel data output
GND	8	ground (0 V)
Q7S	9	serial data output
SHR	10	shift register reset (active LOW)
SHCP	11	shift register clock input
STCP	12	storage register clock input
STR	13	storage register reset (active LOW)
DS	14	serial data input
V _{CC}	16	supply voltage

8-bit shift register with output register

7. Functional description

Table 3.Function table^[1]

Function	Input						
	SHR	STR	SHCP	STCP	DS		
Clear shift register	L	Х	Х	Х	Х		
Clear storage register	Х	L	Х	Х	Х		
Load DS into shift register stage 0, advance previous stage data to the next stage	Н	Х	1	Х	H or L		
Transfer shift register data to storage register and outputs Qn	Х	Н	Х	\uparrow	Х		
Shift register one count pulse ahead of storage register	Н	Н	1	\uparrow	Х		

[1] H = HIGH voltage level;

L = LOW voltage level;

 \uparrow = LOW-to-HIGH transition;

X = don't care.

8. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

				,		
Parameter	Conditions		Min	Max	Unit	
supply voltage			-0.5	+7.0	V	
input clamping current	$V_{\rm I}$ < -0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u>	-	±20	mA	
output clamping current	V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V					
output current	$V_{O} = -0.5 \text{ V}$ to $V_{CC} + 0.5 \text{ V}$					
	Serial data output Q7S		-	±25	mA	
	Parallel data output		-	±35	mA	
supply current	Serial data output Q7S		-	50	mA	
	Parallel data output		-	70	mA	
ground current	Serial data output Q7S		-	-50	mA	
	Parallel data output		-	-70	mA	
storage temperature			-65	+150	°C	
total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$	[2]	-	500	mW	
	supply voltage input clamping current output clamping current output current supply current ground current storage temperature	supply voltagesupply voltageinput clamping current $V_1 < -0.5 V \text{ or } V_1 > V_{CC} + 0.5 V$ output clamping current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ output current $V_0 = -0.5 V \text{ to } V_{CC} + 0.5 V$ Serial data output Q7SParallel data output Q7SParallel data output Q7SParallel data output Q7Sground currentSerial data output Q7Sground currentSerial data output Q7SParallel data outputSerial data output Q7Sbase provide the storage temperatureSerial data output Q7S	supply voltagesupply voltageinput clamping current $V_1 < -0.5 V \text{ or } V_1 > V_{CC} + 0.5 V$ [1]output clamping current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ [1]output current $V_0 = -0.5 V \text{ to } V_{CC} + 0.5 V$ [1]output currentSerial data output Q7SParallel data output Q7SParallel data output Q7SParallel data output[1]ground currentSerial data output Q7Sground currentSerial data output Q7SParallel data output[1]Serial data output Q7SParallel data output	supply voltage-0.5input clamping current $V_1 < -0.5 V \text{ or } V_1 > V_{CC} + 0.5 V$ [1]output clamping current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ [1]output current $V_0 = -0.5 V \text{ to } V_{CC} + 0.5 V$ [1]output current $V_0 = -0.5 V \text{ to } V_{CC} + 0.5 V$ [1]Parallel data output Q7S-Parallel data Output Q7S-<	supply voltage-0.5+7.0input clamping current $V_1 < -0.5 V \text{ or } V_1 > V_{CC} + 0.5 V$ [1]- ± 20 output clamping current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ [1]- ± 20 output current $V_0 < -0.5 V \text{ or } V_0 > V_{CC} + 0.5 V$ [1]- ± 20 output current $V_0 = -0.5 V \text{ to } V_{CC} + 0.5 V$ [1]- ± 20 Parallel data output Q7S ± 25 Parallel data output Q7S- ± 35 Parallel data output Q7S-50Parallel data output Q7S-70Parallel data output Q7SParallel data outputParallel data outputParallel data outputParallel data output	

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SO16 packages: above 70 $^\circ\text{C}$ the value of P_{tot} derates linearly with 8 mW/K.

For SSOP16 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.

8-bit shift register with output register

9. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

Symbol	Parameter	Conditions	-	74HC594			74HCT594		
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V _{CC}	0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V

10. Static characteristics

Table 6. Static characteristics type 74HC594

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C			1	1	
V _{IH}	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	1.2	-	V
		V _{CC} = 4.5 V	3.15	2.4	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	0.8	0.5	V
		V _{CC} = 4.5 V	-	2.1	1.35	V
		V _{CC} = 6.0 V	r V _{IL} a output Q7S 0 mA; V _{CC} = 4.5 V 3.98 4.32 -	V		
V _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		Serial data output Q7S				
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	V
		Parallel data outputs				
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		Serial data output Q7S				
		$I_0 = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
		$I_0 = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	V
		Parallel data outputs				
		$I_0 = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	V
		$I_0 = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	V
li	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±0.1	μA
I _{CC}	supply current		-	-	8.0	μA
Ci	input capacitance		-	3.5	-	pF

74HC_HCT594

8-bit shift register with output register

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C				_	_
VIH	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	V				
		V _{CC} = 6.0 V	-	-	1.8	V
V _{ОН}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		Serial data output Q7S				
		o +85 °C Second S	V			
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	-	-	V
		Parallel data outputs				
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.34	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		Serial data output Q7S				
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V
		$I_0 = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.33	V
		Parallel data outputs				
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V
		I _O = 7.8 mA; V _{CC} = 6.0 V	-	-	0.33	V
l	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±1.0	μA
I _{CC}	supply current		-	-	80	μA
T _{amb} = -	40 °C to +125 °C					
	HIGH-level input voltage	V _{CC} = 2.0 V	1.5	-	-	V
		V _{CC} = 4.5 V	3.15	-	-	V
		V _{CC} = 6.0 V	4.2	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 2.0 V	-	-	0.5	V
		V _{CC} = 4.5 V	-	-	1.35	V
		V _{CC} = 6.0 V	-	-	1.8	V
V _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		Serial data output Q7S				
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V
		Parallel data outputs				
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V
		$I_{O} = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.2	-	-	V

Table 6. Static characteristics type 74HC594 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V)

8-bit shift register with output register

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		Serial data output Q7S				
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	- 0.4	V
		$I_0 = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V
		Parallel data outputs				
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V
		$I_{O} = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	-	0.4	V
l	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±1.0	μA
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0$ V	-	-	160	μA

Table 6. Static characteristics type 74HC594 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Table 7. Static characteristics type 74HCT594

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C		I			
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		Serial data output Q7S				
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V
		Parallel data outputs				
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	V
V _{OL}	LOW-level output voltage					
		Serial data output Q7S				
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	V
		Parallel data outputs				
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.16	0.26	V
l _l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±0.1	μA
I _{CC}	supply current	$V_{I} = V_{CC} \text{ or GND; } I_{O} = 0 \text{ A;}$ $V_{CC} = 5.5 \text{ V}$	-	-	8.0	μΑ
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$ and other inputs at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 4.5 \text{ V}$ to 5.5 V				
		pins SHR, SHCP, STCP, STR	-	150	540	μA
		pin DS	-	25	90	μA
C _i	input capacitance		-	3.5	-	pF

8-bit shift register with output register

Table 7. Static characteristics type 74HCT594 ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
T _{amb} = -40) °C to +85 °C						
VIH	HIGH-level input voltage	$V_{CC} = 4.5 V \text{ to } 5.5 V$	2.0	-	-	V	
VIL	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	0.8	V	
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$					
		Serial data output Q7S					
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V	
		Parallel data outputs					
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.84	-	-	V	
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$					
		Serial data output					
I CC M _{CC}		I _O = 4.0 mA; V _{CC} = 4.5 V	-	-	0.33	V	
		Parallel data outputs					
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.33	V	
l _l	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5$ V	-	3.84 3.84 3.84 - 0 - 0.33			
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	μA			
Δl _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$ and other inputs at V_{CC} or GND; $I_O = 0 \text{ A}$; $V_{CC} = 4.5 \text{ V}$ to 5.5 V					
		pins SHR, SHCP, STCP, STR	-	-	675	μA	
		pin DS	-	-		μA	
T _{amb} = -40) °C to +125 °C						
V _{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V}$ to 5.5 V	2.0	-	-	V	
V _{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V}$ to 5.5 V	-	-	0.8	V	
V _{он}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$					
		Serial data output Q7S					
		$\begin{array}{ c c c c c } V_{I} = V_{IH} \text{ or } V_{IL} & & & & & & & \\ \hline \text{Serial data output Q7S} & & & & & & & & \\ \hline \text{I}_0 = -4.0 \text{ mA}; \text{ V}_{CC} = 4.5 \text{ V} & & & & & & & & \\ \hline \text{Parallel data outputs} & & & & & & & \\ \hline \text{I}_0 = -6.0 \text{ mA}; \text{ V}_{CC} = 4.5 \text{ V} & & & & & & & \\ \hline \text{Serial data output} & & & & & & \\ \hline \text{I}_0 = 4.0 \text{ mA}; \text{ V}_{CC} = 4.5 \text{ V} & & & & & & \\ \hline \text{Parallel data output} & & & & & \\ \hline \text{I}_0 = 6.0 \text{ mA}; \text{ V}_{CC} = 4.5 \text{ V} & & & & & & \\ \hline \text{Parallel data output} & & & & & & \\ \hline \text{I}_0 = 6.0 \text{ mA}; \text{ V}_{CC} = 5.5 \text{ V} & & & & & & \\ \hline \text{V}_1 = \text{ V}_{CC} \text{ or GND; } \text{I}_0 = 0 \text{ A}; & & & & & & \\ \hline \text{V}_{CC} = 5.5 \text{ V} & & & & & & \\ \hline \text{per input pin; } \text{V}_1 = \text{ V}_{CC} - 2.1 \text{ V and} \\ \text{other inputs at } \text{V}_{CC} \text{ or SND;} \\ \hline \text{I}_0 = 0 \text{ A}; \text{ V}_{CC} = 4.5 \text{ V to 5.5 \text{ V} & & & & & \\ \hline \text{pin SHR, SHCP, STCP, STR} & & & & & \\ \hline \text{V}_{CC} = 4.5 \text{ V to 5.5 \text{ V} & & & & & & \\ \hline \text{V}_{CC} = 4.5 \text{ V to 5.5 \text{ V} & & & & & & \\ \hline \text{V}_{CC} = 4.5 \text{ V to 5.5 \text{ V} & & & & & & \\ \hline \text{V}_{CC} = 4.5 \text{ V to 5.5 \text{ V} & & & & & & \\ \hline \text{V}_{I} = \text{V}_{IH} \text{ or V}_{IL} & & & & \\ \hline \text{Serial data output Q7S} & & & & & \\ \hline \text{I}_0 = -4.0 \text{ mA}; \text{ V}_{CC} = 4.5 \text{ V} & & & & & & \\ \hline \text{I}_0 = -6.0 \text{ mA}; \text{ V}_{CC} = 4.5 \text{ V} & & & & & & \\ \hline \text{Parallel data outputs} & & & & \\ \hline \text{I}_0 = 4.0 \text{ mA}; \text{ V}_{CC} = 4.5 \text{ V} & & & & & & \\ \hline \text{I}_0 = 6.0 \text{ mA}; \text{ V}_{CC} = 4.5 \text{ V} & & & & & & \\ \hline \text{V}_1 = \text{ V}_{CC} \text{ or GND}; \text{ V}_{C} = 5.5 \text{ V} & & & & & & \\ \hline \text{V}_1 = \text{ V}_{CC} \text{ or GND}; \text{ V}_{C} = 5.5 \text{ V} & & & & & & \\ \hline \text{I}_0 = 0 \text{ A}; \text{ V}_{CC} = 4.5 \text{ V} \text{ os } 5.5 \text{ V} & & & & \\ \hline \text{per input pin; } \text{ V}_1 = \text{ V}_{CC} \text{ or GND}; \text{ I}_0 = 0 \text{ A}; \text{ V}_{CC} = 5.5 \text{ V} & & & & & \\ \hline \text{per input pin; } \text{ V}_1 = \text{ V}_{CC} \text{ or GND}; \text{ I}_0 = 0 \text{ A}; \text{ V}_{CC} = 5.5 \text{ V} & & & & \\ \hline \text{per input pin pit, } \text{ N}_1 = \text{ V}_{CC} \text{ or GND}; \text{ I}_0 = 0 \text{ A}; \text{ V}_{CC} = 5.5 \text{ V} & & & & \\ \hline \text{pin SHR}, \text{ SHCP, STCP, STR} & & & & & \\ \end{array} $	-	V			
		Parallel data outputs					
		$I_{O} = -6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.7	-	-	V	
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$			- 0.33 - 0.33 - 0.33 - 112.5 - 675 - 112.5 - 0.8 - 0.8 - 0.8 - 0.4 - 0.4 - 0.4 - 160		
		Serial data output Q7S					
		I _O = 4.0 mA; V _{CC} = 4.5 V	-	-	0.4	V	
		Parallel data outputs					
		$I_{O} = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.4	V	
I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±1.0	μA	
lcc	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A;	$V_I = V_{CC} \text{ or } GND; I_O = 0 \text{ A};$ -				
ΔI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 \text{ V}$ and other inputs at V_{CC} or GND;					
		pins SHR, SHCP, STCP, STR	-	-	735	μA	
		pin DS	-	-	122.5	μA	

© NXP Semiconductors N.V. 2016. All rights reserved.

8-bit shift register with output register

11. Dynamic characteristics

Table 8. Dynamic characteristics type 74HC594

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF; see Figure 14.$

Symbol	Parameter	Conditions		25 °C		-40 °C t	o +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
t _{pd}	propagation	SHCP to Q7S; see Figure 8 [1]								
	delay	V _{CC} = 2.0 V	-	44	150	-	185	-	225	ns
		V _{CC} = 4.5 V	-	16	30	-	37	-	45	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	13	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	14	26	-	31	-	38	ns
		STCP to Qn; see Figure 9								
		V _{CC} = 2.0 V	-	44	150	-	185	-	225	ns
		V _{CC} = 4.5 V	-	16	30	-	37	-	45	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	13	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	14	26	-	31	-	38	ns
t _{PHL}	HIGH to	SHR to Q7S; see Figure 12								
	LOW	V _{CC} = 2.0 V	-	39	150	-	185	-	225	ns
	propagation delay	V _{CC} = 4.5 V	-	14	30	-	37	-	45	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	11	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	12	26	-	31	-	38	ns
		STR to Qn; see Figure 13								
		V _{CC} = 2.0 V	-	39	125	-	155	-	185	ns
		V _{CC} = 4.5 V	-	14	25	-	31	-	37	ns
		V _{CC} = 5.0 V; C _L = 15 pF	-	11	-	-	-	-	-	ns
		V _{CC} = 6.0 V	-	12	21	-	26	-	31	ns
t _{THL}	HIGH to	Q7S; see Figure 8								
	LOW output transition	V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
	time	V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
		V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns
		Qn								
		V _{CC} = 2.0 V	-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V	-	5	12	-	15	-	18	ns
		V _{CC} = 6.0 V	-	4	10	-	13	-	15	ns
t _{TLH}	LOW to	Q7S; see Figure 8								
	HIGH output	V _{CC} = 2.0 V	-	19	75	-	95	-	110	ns
	transition	V _{CC} = 4.5 V	-	7	15	-	19	-	22	ns
	time	V _{CC} = 6.0 V	-	6	13	-	16	-	19	ns
		Qn								
		V _{CC} = 2.0 V	-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V	-	5	12	-	15	-	18	ns
		V _{CC} = 6.0 V	-	4	10	-	13	-	15	ns

8-bit shift register with output register

Symbol	Parameter	Conditions		25 °C		–40 °C t	o +85 °C	–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Мах	Min	Max	
W	pulse width	SHCP (HIGH or LOW); see Figure 8								
		V _{CC} = 2.0 V	80	10	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	4	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	3	-	17	-	20	-	ns
		STCP (HIGH or LOW); see <u>Figure 9</u>								
		V _{CC} = 2.0 V	80	10	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	4	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	3	-	17	-	20	-	ns
		SHR and STR (HIGH or LOW); see <u>Figure 12</u> and <u>Figure 13</u>								
		V _{CC} = 2.0 V	80	14	-	100	-	120	-	ns
		V _{CC} = 4.5 V	16	5	-	20	-	24	-	ns
		V _{CC} = 6.0 V	14	4	-	17	-	20	-	ns
su	set-up time	DS to SHCP; see Figure 10								
		V _{CC} = 2.0 V	100	10	-	125	-	150	-	ns
		V _{CC} = 4.5 V	20	4	-	25	-	30	-	ns
		V _{CC} = 6.0 V	17	3	-	21	-	26	-	ns
		SHR to STCP; see <u>Figure 11</u>								
		V _{CC} = 2.0 V	100	14	-	125	-	150	-	ns
		$V_{CC} = 4.5 V$	20	5	-	25	-	30	-	ns
		V _{CC} = 6.0 V	17	4	-	21	-	26	-	ns
		SHCP to STCP; see <u>Figure 9</u>								
		$V_{CC} = 2.0 V$	100	17	-	125	-	150	-	ns
		$V_{CC} = 4.5 V$	20	6	-	25	-	30	-	ns
		V _{CC} = 6.0 V	17	5	-	21	-	26	-	ns
h	hold time	DS to SHCP; see Figure 10								
		V _{CC} = 2.0 V	25	-8	-	30	-	35	-	ns
		V _{CC} = 4.5 V	5	-3	-	6	-	7	-	ns
		V _{CC} = 6.0 V	4	-2	-	5	-	6	-	ns
rec	recovery time	SHRto SHCP andSTR to STCP; seeFigure 12and Figure 13								
		V _{CC} = 2.0 V	50	-14	-	65	-	75	-	ns
		V _{CC} = 4.5 V	10	-5	-	13	-	15	-	ns
		V _{CC} = 6.0 V	9	-4	-	11	-	13	-	ns

Table 8. Dynamic characteristics type 74HC594 ...continued

74HC_HCT594
Product data sheet

8-bit shift register with output register

Symbol	Parameter	Conditions	25 °C			–40 °C to +85 °C		–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
IIIdA	maximum frequency	SHCP or STCP; see <u>Figure 8</u> and <u>Figure 9</u>								
		V _{CC} = 2.0 V	6.0	30	-	4.8	-	4.0	-	MHz
		V _{CC} = 4.5 V	30	92	-	24	-	20	-	MHz
		V _{CC} = 5.0 V; C _L = 15 pF	-	100	-	-	-	-	-	MHz
		V _{CC} = 6.0 V	35	109	-	28	-	24	-	MHz
C _{PD}	power dissipation capacitance	$V_{I} = GND \text{ to } V_{CC}; \qquad [2]$ $V_{CC} = 5 \text{ V}; f_{i} = 1 \text{ MHz}$	-	84	-	-	-	-	-	pF

Table 8. Dynamic characteristics type 74HC594 ...continued

[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

[2] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

Table 9. Dynamic characteristics type 74HCT594

GND = 0 V; $V_{CC} = 4.5 V$; $t_r = t_f = 6 ns$; $C_L = 50 pF$; see <u>Figure 14</u>.

Symbol	Parameter	Conditions		25 °C			–40 °C to +85 °C		–40 °C to +125 °C	
			Min	Тур	Max	Min	Max	Min	Max	
t _{pd}	propagation	SHCP to Q7S; see Figure 8 [1]	-	18	32	-	40	-	48	ns
	delay	$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	15	-	-	-	-	-	ns
		STCP to Qn; see Figure 9	-	18	32	-	40	-	48	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	15	-	-	-	-	-	ns
t _{PHL}	HIGH to LOW propagation delay	SHR to Q7S; see Figure 12	-	17	30	-	38	-	45	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	14	-	-	-	-	-	ns
		STR to Qn; see Figure 13	-	17	30	-	38	-	45	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	14	-	-	-	-	-	ns
t _{THL}	HIGH to LOW output transition time	Q7S; see Figure 8								
		$V_{CC} = 4.5 V$	-	7	15	-	19	-	22	ns
		Qn								
		$V_{CC} = 4.5 V$	-	5	12	-	15	-	18	ns
t _{TLH}	LOW to	Q7S; see Figure 8								
	HIGH output transition	$V_{CC} = 4.5 V$	-	7	15	-	19	-	22	ns
	time	Qn								
		V _{CC} = 4.5 V	-	5	12	-	15	-	18	ns

12 of 23

8-bit shift register with output register

Symbol	Parameter	Conditions		25 °C		–40 °C to +85 °C		–40 °C to +125 °C		Unit
			Min	Тур	Max	Min	Max	Min	Max	
t _W	pulse width	SHCP (HIGH or LOW); see Figure 8	16	4	-	20	-	24	-	ns
		STCP (HIGH or LOW); see <u>Figure 9</u>	16	4	-	20	-	24	-	ns
		SHR and STR (HIGH or LOW); see <u>Figure 12</u> and <u>Figure 13</u>	16	6	-	20	-	24	-	ns
t _{su}	set-up time	DS to SHCP; see Figure 10	20	4	-	25	-	30	-	ns
		SHR to STCP; see <u>Figure 11</u>	20	6	-	25	-	30	-	ns
		SHCP to STCP; see <u>Figure 9</u>	20	7	-	25	-	30	-	ns
t _h	hold time	DS to SHCP; see Figure 10	5	-3	-	6	-	7	-	ns
t _{rec}	recovery time	SHR to SHCP and STR to STCP; see Figure 12 and Figure 13	10	-5	-	13	-	15	-	ns
f _{max}	maximum frequency	SHCP or STCP; see <u>Figure 8</u> and <u>Figure 9</u>	30	92	-	24	-	20	-	MHz
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$	-	100	-	-	-	-	-	MHz
C _{PD}	power dissipation capacitance	$V_{I} = GND \text{ to } V_{CC} - 1.5 \text{ V}; \qquad \begin{tabular}{ll} \mathbb{Z}\\ $V_{CC} = 5 \text{ V}$; $f_{i} = 1 $ MHz$ \end{tabular}$	-	89	-	-	-	-	-	pF

Table 9. Dynamic characteristics type 74HCT594 ...continued

GND = 0 V; $V_{CC} = 4.5 V$; $t_r = t_f = 6 ns$; $C_L = 50 pF$; see <u>Figure 14</u>.

[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

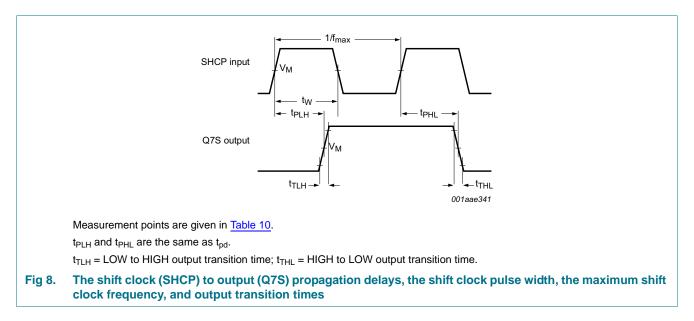
[2] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

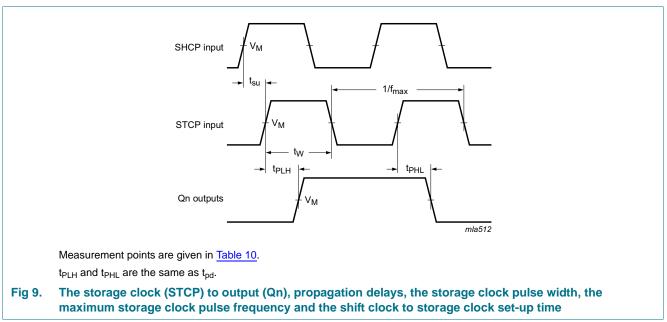
 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

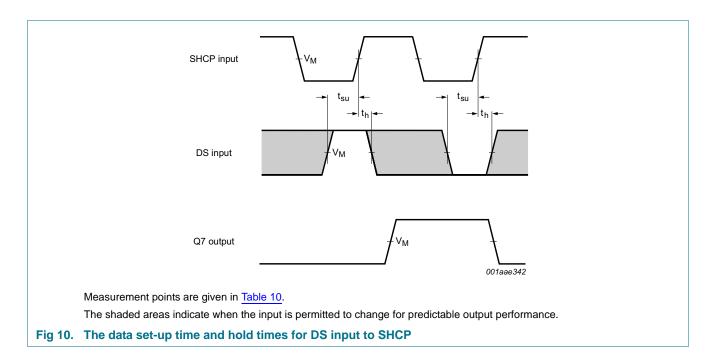

V_{CC} = supply voltage in V;

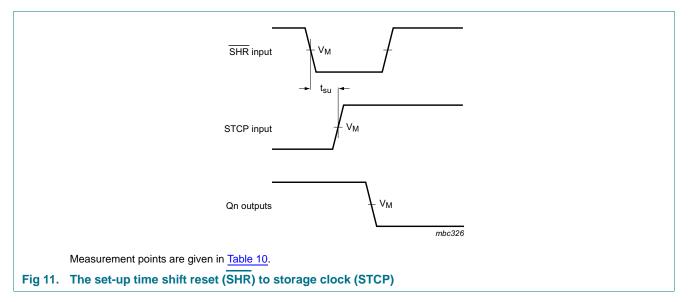

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of outputs.

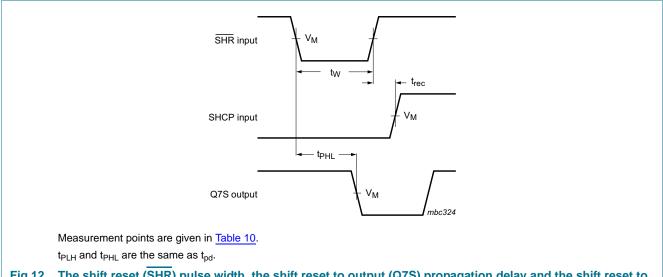
8-bit shift register with output register

12. Waveforms

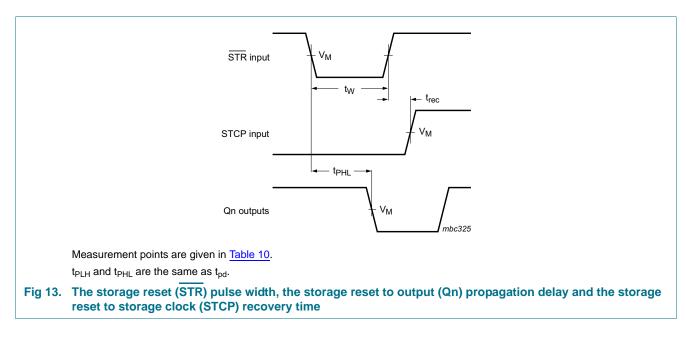




NXP Semiconductors

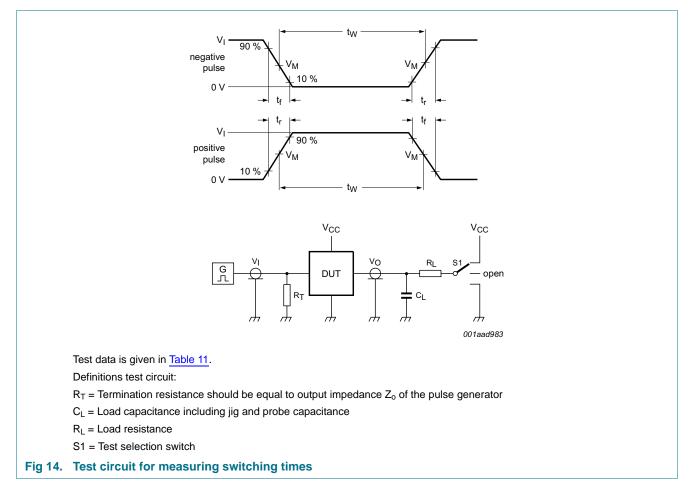

74HC594; 74HCT594

8-bit shift register with output register



8-bit shift register with output register

Fig 12. The shift reset (SHR) pulse width, the shift reset to output (Q7S) propagation delay and the shift reset to shift clock (SHCP) recovery time


Table 10.Measurement points

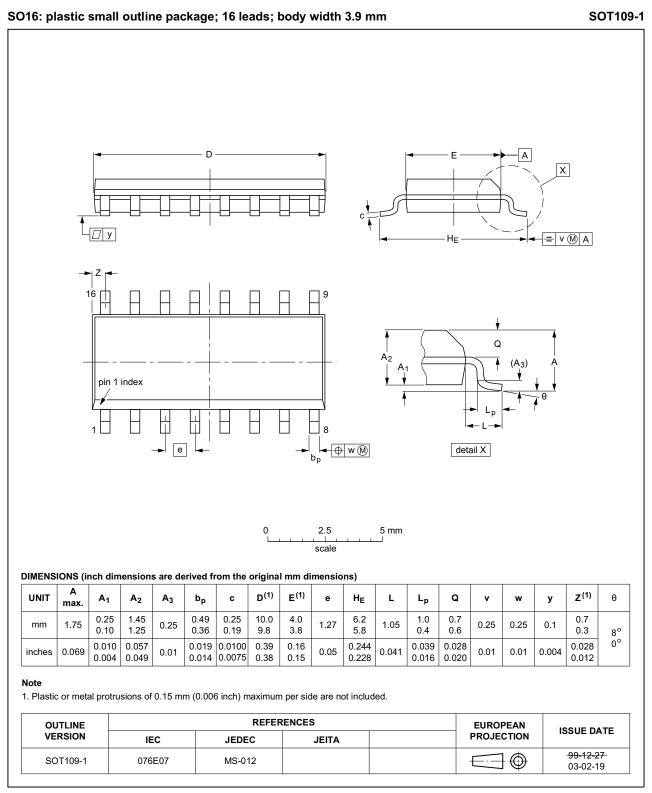
Туре	Input	Output
	V _M	V _M
74HC594	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$
74HCT594	1.3 V	1.3 V

NXP Semiconductors

74HC594; 74HCT594

8-bit shift register with output register

Table 11. Test data


Туре	Input		Load		S1 position		
	Vi	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
74HC594	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}
74HCT594	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	GND	V _{CC}

NXP Semiconductors

74HC594; 74HCT594

8-bit shift register with output register

13. Package outline

Fig 15. Package outline SOT109-1 (SO16)

All information provided in this document is subject to legal disclaimers.

74HC_HCT594

© NXP Semiconductors N.V. 2016. All rights reserved.

8-bit shift register with output register

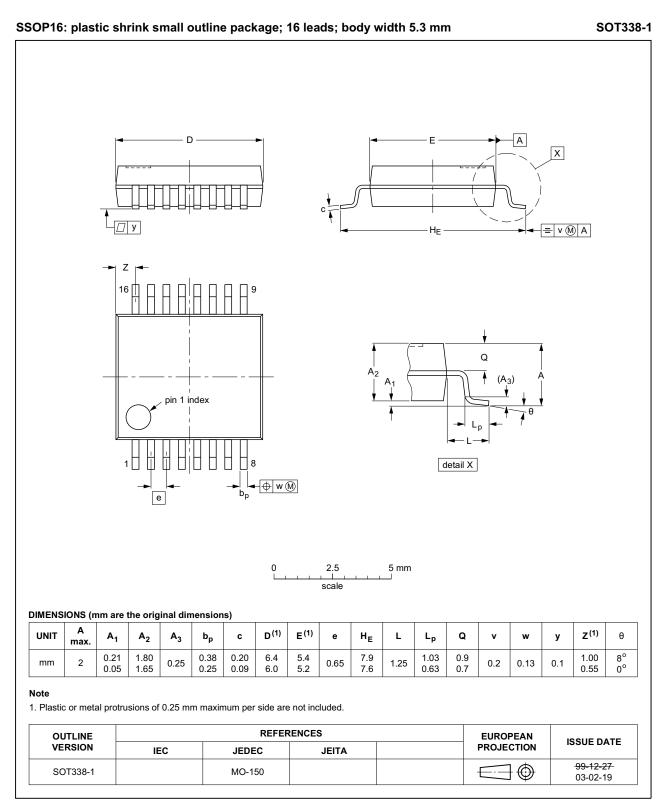


Fig 16. Package outline SOT338-1 (SSOP16)

74HC_HCT594

© NXP Semiconductors N.V. 2016. All rights reserved.

8-bit shift register with output register

14. Abbreviations

Table 12. Abbrev	viations
Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
LSTTL	Low-Power Schottky Transistor-Transistor Logic
MM	Machine Model
TTL	Transistor-Transistor Logic

15. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74HC_HCT594 v.4	20160225	Product data sheet	-	74HC_HCT594 v.3		
Modifications:	Type numbers 74	HC594N and 74HCT594N	I (SOT38-4) removed.			
74HC_HCT594 v.3	20061220	Product data sheet	-	74HC_HCT594_CNV v.2		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts have b 	been adapted to the new o	company name where	appropriate.		
	 <u>Table 1 "Ordering information"</u> updated. 					
74HC_HCT594_CNV v.2	19970908	Product specification	-	74HC_HCT594_CNV v.1		

8-bit shift register with output register

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

© NXP Semiconductors N.V. 2016. All rights reserved.

74HC HCT594

8-bit shift register with output register

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

8-bit shift register with output register

18. Contents

1	General description 1
2	Features and benefits 1
3	Applications 1
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 4
6.1	Pinning
6.2	Pin description 4
7	Functional description 5
8	Limiting values 5
9	Recommended operating conditions 6
10	Static characteristics 6
11	Dynamic characteristics 10
12	Waveforms 14
13	Package outline 18
14	Abbreviations 20
15	Revision history 20
16	Legal information 21
16.1	Data sheet status 21
16.2	Definitions
16.3	Disclaimers 21
16.4	Trademarks 22
17	Contact information 22
18	Contents 23

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP Semiconductors N.V. 2016.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 February 2016 Document identifier: 74HC_HCT594

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nexperia:

74HCT594D 74HC594D 74HC594DB 74HC594N 74HCT594DB 74HCT594D-Q100,118 74HC594D-Q100,118

NXP:

 74HC594D,112
 74HC594DB,112
 74HC594DB,118
 74HC594D,118
 74HC594N,112
 74HCT594D,112

 74HCT594DB,112
 74HCT594DB,118
 74HCT594DB,118
 74HCT594DB,118
 74HCT594DB,118