LM2742 N-Channel FET Synchronous Buck Regulator Controller for Low Output Voltages

Check for Samples: LM2742

FEATURES

- Input Power from 1V to 16V
- Output Voltage Adjustable down to 0.6V
- Power Good Flag, Adjustable Soft-start and Output Enable for Easy Power Sequencing
- Reference Accuracy: $1.5 \%\left(0^{\circ} \mathrm{C}-125^{\circ} \mathrm{C}\right)$
- Current Limit Without Sense Resistor
- Soft Start
- Switching Frequency from 50 kHz to $2 \mathbf{~ M H z}$
- 40ns Typical Minimum On-time
- TSSOP-14 Package

APPLICATIONS

- POL Power Supply Modules
- Cable Modems
- Set-Top Boxes/ Home Gateways
- DDR Core Power
- High-Efficiency Distributed Power
- Local Regulation of Core Power

DESCRIPTION

The LM2742 is a high-speed, synchronous, switching regulator controller. It is intended to control currents of 0.7 A to 20A with up to 95% conversion efficiencies. Power up and down sequencing is achieved with the power-good flag, adjustable soft-start and output enable features. The LM2742 operates from a lowcurrent 5 V bias and can convert from a 1 V to 16 V power rail. The part utilizes a fixed-frequency, voltage-mode, PWM control architecture and the switching frequency is adjustable from 50 kHz to 2 MHz by setting the value of an external resistor. Current limit is achieved by monitoring the voltage drop across the on-resistance of the low-side MOSFET, which enables on-times on the order of 40 ns , one of the best in the industry. The wide range of operating frequencies gives the power supply designer the flexibility to fine-tune component size, cost, noise and efficiency. The adaptive, nonoverlapping MOSFET gate-drivers and high-side bootstrap structure helps to further maximize efficiency. The high-side power FET drain voltage can be from 1 V to 16 V and the output voltage is adjustable down to 0.6 V .

TYPICAL APPLICATION

Figure 1. Typical Application Circuit

[^0]
CONNECTION DIAGRAM

Figure 2. 14-Lead Plastic TSSOP
$\theta_{J A}=155^{\circ} \mathrm{C} / \mathrm{W}$

PIN DESCRIPTIONS

BOOT (Pin 1) - Supply rail for the N-channel MOSFET gate drive. The voltage should be at least one gate threshold above the regulator input voltage to properly turn on the high-side N-FET.
LG (Pin 2) - Gate drive for the low-side N-channel MOSFET. This signal is interlocked with HG to avoid shootthrough problems
PGND (Pins 3, 13) - Ground for FET drive circuitry. It should be connected to system ground.
SGND (Pin 4) - Ground for signal level circuitry. It should be connected to system ground.
V_{CC} (Pin 5) - Supply rail for the controller.
PWGD (Pin 6) - Power Good. This is an open drain output. The pin is pulled low when the chip is in UVP, OVP, or UVLO mode. During normal operation, this pin is connected to V_{CC} or other voltage source through a pull-up resistor.
ISEN (Pin 7) - Current limit threshold setting. This sources a fixed $50 \mu \mathrm{~A}$ current. A resistor of appropriate value should be connected between this pin and the drain of the low-side FET.
EAO (Pin 8) - Output of the error amplifier. The voltage level on this pin is compared with an internally generated ramp signal to determine the duty cycle. This pin is necessary for compensating the control loop.
SS (Pin 9) - Soft start pin. A capacitor connected between this pin and ground sets the speed at which the output voltage ramps up. Larger capacitor value results in slower output voltage ramp but also lower inrush current.
FB (Pin 10) - This is the inverting input of the error amplifier, which is used for sensing the output voltage and compensating the control loop.
FREQ (Pin 11) - The switching frequency is set by connecting a resistor between this pin and ground.
$\overline{\mathbf{S D}}$ (Pin 12) - IC Logic Shutdown. When this pin is pulled low the chip turns off both the high side and low side switches. While this pin is low, the IC will not start up. An internal $20 \mu \mathrm{~A}$ pull-up connects this pin to V_{CC}. For a device which turns on the low side switch during shutdown, see the pin compatible LM2737.
HG (Pin 14) - Gate drive for the high-side N-channel MOSFET. This signal is interlocked with LG to avoid shootthrough problems.

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

If Military/Aerospace specified devices are required, contact the Texas Instruments Semiconductor Sales Office/ Distributors for availability and specifications.

$V_{\text {CC }}$	7 V
BOOTV	21 V
LG and HG to GND ${ }^{(2)}$	-2 V to 21 V
Junction Temperature	$150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Soldering Information Lead	
Temperature (soldering, 10sec)	$260^{\circ} \mathrm{C}$
Infrared or Convection (20sec)	$235^{\circ} \mathrm{C}$
ESD Rating	2 kV

(1) Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device operates correctly. Operating Ratings do not imply ensured performance limits.
(2) The LG and HG pin can have -2 V to -0.5 V applied for a maximum duty cycle of 10% with a maximum period of 1 second. There is no duty cycle or maximum period limitation for a LG and HG pin voltage range of -0.5 V to 21 V .

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	4.5 V to 5.5 V
Junction Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$	$155^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

$V_{C C}=5 \mathrm{~V}$ unless otherwise indicated. Typicals and limits appearing in plain type apply for $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$. Limits appearing in boldface type apply over full Operating Temperature Range. Datasheet min/max specification limits are specified by design, test, or statistical analysis.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{V}_{\text {FB_ADJ }}$	FB Pin Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, 0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.591	0.6	0.609	V
		$\mathrm{V}_{\text {CC }}=5 \mathrm{~V}, 0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.591	0.6	0.609	
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, 0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.591	0.6	0.609	
		$\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.589	0.6	0.609	
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.589	0.6	0.609	
		$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V},-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	0.589	0.6	0.609	
V_{ON}	UVLO Thresholds	Rising Falling		$\begin{aligned} & 4.2 \\ & 3.6 \end{aligned}$		V
$\mathrm{I}_{\mathrm{Q}-\mathrm{V} 5}$	Operating V_{CC} Current	$\begin{aligned} & \mathrm{SD}=5 \mathrm{~V}, \mathrm{FB}=0.55 \mathrm{~V} \\ & \mathrm{Fsw}=600 \mathrm{kHz} \end{aligned}$	1	1.5	2	mA
		$\begin{aligned} & \mathrm{SD}=5 \mathrm{~V}, \mathrm{FB}=0.65 \mathrm{~V} \\ & \mathrm{Fsw}=600 \mathrm{kHz} \end{aligned}$	0.8	1.7	2.2	
	Shutdown $\mathrm{V}_{\text {CC }}$ Current	SD $=0 \mathrm{~V}$	0.15	0.4	0.7	mA
$\mathrm{t}_{\text {PWGD1 }}$	PWGD Pin Response Time	FB Voltage Going Up		6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {PWGD2 }}$	PWGD Pin Response Time	FB Voltage Going Down		6		$\mu \mathrm{s}$
$\mathrm{I}_{\text {SD }}$	SD Pin Internal Pull-up Current			20		$\mu \mathrm{A}$
ISS-ON	SS Pin Source Current	$\begin{aligned} & \text { SS Voltage }=2.5 \mathrm{~V} \\ & 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 5 \end{aligned}$	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	$\mu \mathrm{A}$
Iss-oc	SS Pin Sink Current During Over Current	SS Voltage $=2.5 \mathrm{~V}$		95		$\mu \mathrm{A}$
$\mathrm{I}_{\text {SEN-TH }}$	ISEN Pin Source Current Trip Point	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 35 \\ & 28 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\mu \mathrm{A}$

ERROR AMPLIFIER

GBW	Error Amplifier Unity Gain Bandwidth			5		MHz
G	Error Amplifier DC Gain			60		dB
SR	Error Amplifier Slew Rate			6		V/ $/ \mathrm{A}$
$\mathrm{I}_{\text {FB }}$	FB Pin Bias Current	$\begin{aligned} & \mathrm{FB}=0.55 \mathrm{~V} \\ & \mathrm{FB}=0.65 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & 100 \\ & 155 \end{aligned}$	nA
$\mathrm{I}_{\text {EAO }}$	EAO Pin Current Sourcing and Sinking	$\begin{aligned} & \mathrm{V}_{\text {EAO }}=2.5, \mathrm{FB}=0.55 \mathrm{~V} \\ & \mathrm{~V}_{\text {EAO }}=2.5, \mathrm{FB}=0.65 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 2.8 \\ & 0.8 \end{aligned}$		mA
$\mathrm{V}_{\text {EA }}$	Error Amplifier Maximum Swing	Minimum Maximum		$\begin{aligned} & 1.2 \\ & 3.2 \end{aligned}$		V

GATE DRIVE

$\mathrm{I}_{\mathrm{Q} \text {-BOOT }}$	BOOT Pin Quiescent Current	$\begin{array}{\|l} \mathrm{BOOT}=12 \mathrm{~V}, \mathrm{EN}=0 \\ 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$	$\begin{aligned} & 160 \\ & 215 \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{R}_{\text {DS } 1}$	Top FET Driver Pull-Up ON resistance	BOOT-SW $=5 \mathrm{~V}$ at 350 mA	3		Ω
$\mathrm{R}_{\text {DS2 }}$	Top FET Driver Pull-Down ON resistance	BOOT-SW $=5 \mathrm{~V}$ at 350 mA	2		Ω
$\mathrm{R}_{\text {DS3 }}$	Bottom FET Driver Pull-Up ON resistance	BOOT-SW $=5 \mathrm{~V}$ at 350 mA	3		Ω
$\mathrm{R}_{\text {DS4 }}$	Bottom FET Driver Pull-Down ON resistance	BOOT-SW $=5 \mathrm{~V}$ at 350 mA	2		Ω

ELECTRICAL CHARACTERISTICS (continued)

$V_{C C}=5 \mathrm{~V}$ unless otherwise indicated. Typicals and limits appearing in plain type apply for $T_{A}=T_{J}=+25^{\circ} \mathrm{C}$. Limits appearing in boldface type apply over full Operating Temperature Range. Datasheet min/max specification limits are specified by design, test, or statistical analysis.

Symbol	Parameter	Conditions	Min	Typ	Max	Units
OSCILLATOR						
fosc	PWM Frequency	$\mathrm{R}_{\text {FADJ }}=590 \mathrm{k} \Omega$		50		kHz
		$\mathrm{R}_{\text {FADJ }}=88.7 \mathrm{k} \Omega$		300		
		$\mathrm{R}_{\text {FADJ }}=42.2 \mathrm{k} \Omega, 0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	500	600	700	
		$\mathrm{R}_{\text {FADJ }}=42.2 \mathrm{k} \Omega,-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	490	600	700	
		$\mathrm{R}_{\text {FADJ }}=17.4 \mathrm{k} \Omega$		1400		
		$\mathrm{R}_{\text {FADJ }}=11.3 \mathrm{k} \Omega$		2000		
D	Max Duty Cycle	$\begin{aligned} & \begin{array}{l} \mathrm{f}_{\mathrm{PwM}}=300 \mathrm{kHz} \\ \mathrm{f}_{\text {PWM }}=600 \mathrm{kHz} \end{array} \\ & \hline \end{aligned}$		$\begin{aligned} & 90 \\ & 88 \\ & \hline \end{aligned}$		\%
$\mathrm{t}_{\text {on-min }}$	Minimum on-time			40		ns
LOGIC INPUTS AND OUTPUTS						
$\mathrm{V}_{\text {SD-IH }}$	SD Pin Logic High Trip Point			2.6	3.5	V
$\mathrm{V}_{\text {SD-IL }}$	SD Pin Logic Low Trip Point	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.6 \end{aligned}$		V
$\mathrm{V}_{\text {PWGD-Th-LO }}$	PWGD Pin Trip Points	FB Voltage Going Down $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & 0.413 \\ & 0.410 \end{aligned}$	$\begin{aligned} & 0.430 \\ & 0.430 \end{aligned}$	$\begin{aligned} & 0.446 \\ & 0.446 \end{aligned}$	V
$\mathrm{V}_{\text {PWGD-TH-HI }}$	PWGD Pin Trip Points	FB Voltage Going Up $0^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & 0.691 \\ & 0.688 \end{aligned}$	$\begin{aligned} & 0.710 \\ & 0.710 \end{aligned}$	$\begin{aligned} & 0.734 \\ & 0.734 \end{aligned}$	V
$\mathrm{V}_{\text {PWGD-HYS }}$	PWGD Hysteresis	FB Voltage Going Down FB Voltage Going Up		$\begin{gathered} 35 \\ 110 \end{gathered}$		mV

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3.

Figure 5.
Bootpin Current vs Temperature with 5V Bootstrap

Figure 7.

Figure 4.

Figure 6.

Figure 8.

LM2742

Figure 9.

Figure 11.

Figure 13.
(in $\mathbf{9 0 0}$ to $\mathbf{2 0 0 0 k H z}$ range), $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Figure 10.

Figure 12.

Figure 14.

Figure 15.

Start Up (Full Load, 10x $\mathrm{C}_{\text {Ss }}$)

$10 \mathrm{~ms} /$ DIV
Figure 17.

$400 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 19.

Figure 16.

Start Up (Into 1.2V Pre-Bias)
$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$

Figure 18.

$40 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 20.

Figure 21.
Load Transient Response ($\mathrm{I}_{\mathrm{O}}=4$ to 0A)

$20 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 23.
Line Transient Response ($\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ to 5 V)

$40 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 25.

Load Transient Response ($\mathrm{I}_{\mathrm{O}}=0$ to 4A)

$20 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 22.
Line Transient Response ($\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ to 12V)
$V_{O}=1.2 \mathrm{~V}, I_{0}=5 \mathrm{~A}$

$40 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 24.

$400 \mu \mathrm{~s} /$ DIV
Figure 26.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

Peak Current During Current Limit

Figure 27.
$V_{I N}=12 \mathrm{~V}$ Peak Current During Current Limit
$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{LIM}}=4 \mathrm{~A}, \mathrm{~F}_{\mathrm{SW}}=300 \mathrm{kHz}, \mathrm{L}=15 \mu \mathrm{H}$

Figure 28.

BLOCK DIAGRAM

APPLICATION INFORMATION

THEORY OF OPERATION

The LM2742 is a voltage-mode, high-speed synchronous buck regulator with a PWM control scheme. It is designed for use in set-top boxes, thin clients, DSL/Cable modems, and other applications that require high efficiency buck converters. It has power good (PWRGD), and output shutdown ($\overline{\mathrm{SD}}$). Current limit is achieved by sensing the voltage V_{DS} across the low side FET. During current limit the high side gate is turned off and the low side gate turned on. The soft start capacitor is discharged by a $95 \mu \mathrm{~A}$ source (reducing the maximum duty cycle) until the current is under control.

START UP

When V_{CC} exceeds 4.2 V and the shutdown pin $\overline{\mathrm{SD}}$ sees a logic high the soft start capacitor begins charging through an internal fixed $10 \mu \mathrm{~A}$ source. During this time the output of the error amplifier is allowed to rise with the voltage of the soft start capacitor. This capacitor, C_{SS}, determines soft start time, and can be determined approximately by:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{ss}}=\frac{\mathrm{t}_{\mathrm{ss}}}{2.5 \times 10^{5}} \tag{1}
\end{equation*}
$$

An application for a microprocessor might need a delay of 3 ms , in which case $\mathrm{C}_{s S}$ would be 12 nF . For a different device, a 100 ms delay might be more appropriate, in which case $\mathrm{C}_{\text {SS }}$ would be 400 nF . (39010%) During soft start the PWRGD flag is forced low and is released when the voltage reaches a set value. At this point this chip enters normal operation mode and the Power Good flag is released.
Since the output is floating when the LM2742 is turned off, it is possible that the output capacitor may be precharged to some positive value. During start-up, the LM2742 operates fully synchronous and will discharge the output capacitor to some extent depending on the output voltage, soft start capacitance, and the size of the output capacitor.

NORMAL OPERATION

While in normal operation mode, the LM2742 regulates the output voltage by controlling the duty cycle of the high side and low side FETs. The equation governing output voltage is:

$$
\begin{equation*}
V_{\mathrm{O}}=0.6 \times\left(\mathrm{R}_{\mathrm{FB} 1}+\mathrm{R}_{\mathrm{FB} 2}\right) / \mathrm{R}_{\mathrm{FB} 1} \tag{2}
\end{equation*}
$$

The PWM frequency is adjustable between 50 kHz and 2 MHz and is set by an external resistor, $\mathrm{R}_{\text {FADJ }}$, between the FREQ pin and ground. The resistance needed for a desired frequency is approximately:

$$
\begin{equation*}
R_{\text {FADJ }}=\left(\frac{20500}{\text { freq }[k H z]}\right)^{1.0526} \mathrm{k} \Omega \tag{3}
\end{equation*}
$$

MOSFET GATE DRIVERS

The LM2742 has two gate drivers designed for driving N-channel MOSFETs in a synchronous mode. Power for the drivers is supplied through the BOOT pin. For the high side gate (HG) to fully turn on the top FET, the BOOT voltage must be at least one $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ greater than Vin. (BOOT $\geq 2 * \mathrm{Vin}$) This voltage can be supplied by a separate, higher voltage source, or supplied from a local charge pump structure. In a system such as a desktop computer, both 5 V and 12 V are usually available. Hence if Vin was 5 V , the 12 V supply could be used for BOOT. 12 V is more than $2^{*} \mathrm{Vin}$, so the HG would operate correctly. For a BOOT of 12 V , the initial gate charging current is 2 A , and the initial gate discharging current is typically 6 A .

Figure 29. BOOT Supplied by Charge Pump
In a system without a separate, higher voltage, a charge pump (bootstrap) can be built using a diode and small capacitor, Figure 29. The capacitor serves to maintain enough voltage between the top FET gate and source to control the device even when the top FET is on and its source has risen up to the input voltage level.
The LM2742 gate drives use a BiCMOS design. Unlike some other bipolar control ICs, the gate drivers have rail-to-rail swing, ensuring no spurious turn-on due to capacitive coupling.

POWER GOOD SIGNAL

The power good signal is the or-gated flag representing over-voltage and under-voltage protection. If the output voltage is 18% over it's nominal value, $\mathrm{V}_{\mathrm{FB}}=0.7 \mathrm{~V}$, or falls 30% below that value, $\mathrm{V}_{\mathrm{FB}}=0.41 \mathrm{~V}$, the power good flag goes low. It will return to a logic high whenever the feedback pin voltage is between 70% and 118% of 0.6 V . The power good pin is an open drain output that can be pulled up to logic voltages of 5 V or less with a $10 \mathrm{k} \Omega$ resistor.

UVLO

The 4.2 V turn-on threshold on V_{CC} has a built in hysteresis of 0.6 V . Therefore, if V_{CC} drops below 3.6 V , the chip enters UVLO mode. UVLO consists of turning off the top FET, turning off the bottom FET, and remaining in that condition until V_{CC} rises above 4.2 V . As with shutdown, the soft start capacitor is discharged through a FET, ensuring that the next start-up will be smooth.

CURRENT LIMIT

Current limit is realized by sensing the voltage across the low side FET while it is on. The $\mathrm{R}_{\text {DSON }}$ of the FET is a known value, hence the current through the FET can be determined as:

$$
\begin{equation*}
V_{D S}=I^{*} R_{D S O N} \tag{4}
\end{equation*}
$$

The current through the low side FET while it is on is also the falling portion of the triangle wave inductor current. The current limit threshold is determined by an external resistor, R_{CS}, connected between the switch node and the $I_{\text {SEN }}$ pin. A constant current of $50 \mu \mathrm{~A}$ is forced through R_{CS}, causing a fixed voltage drop. This fixed voltage is compared against $V_{D S}$ and if the latter is higher, the current limit of the chip has been reached. R_{CS} can be found by using the following equation:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{CS}}=\mathrm{R}_{\mathrm{DSON}}(\mathrm{LOW}) * \mathrm{I}_{\mathrm{LIM}} / 50 \mu \mathrm{~A} \tag{5}
\end{equation*}
$$

For example, a conservative 15 A current limit in a 10 A design with a minimum $R_{D S O N}$ of $10 \mathrm{~m} \Omega$ would require a $3.3 \mathrm{k} \Omega$ resistor. Because current sensing is done across the low side FET, no minimum high side on-time is necessary. In the current limit mode the LM2727/37 will turn the high side off and the keep low side on for as long as necessary. The LM2727/37 enters current limit mode if the inductor current exceeds the current limit threshold at the point where the high side FET turns off and the low side FET turns on. (The point of peak inductor current. See Figure 30.) Note that in normal operation mode the high side FET always turns on at the
beginning of a clock cycle. In current limit mode, by contrast, the high side FET on pulse is skipped. This causes inductor current to fall. Unlike a normal operation switching cycle, however, in a current limit mode switching cycle the high side FET will turn on as soon as inductor current has fallen to the current limit threshold. The LM2727/37 will continue to skip high side FET pulses until the inductor current peak is below the current limit threshold, at which point the system resumes normal operation.

Figure 30. Current Limit Threshold
Unlike a high side FET current sensing scheme, which limits the peaks of inductor current, low side current sensing is only allowed to limit the current during the converter off-time, when inductor current is falling. Therefore in a typical current limit plot the valleys are normally well defined, but the peaks are variable, according to the duty cycle. The PWM error amplifier and comparator control the off pulse of the high side FET, even during current limit mode, meaning that peak inductor current can exceed the current limit threshold. Assuming that the output inductor does not saturate, the maximum peak inductor current during current limit mode can be calculated with the following equation:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{PK}-\mathrm{CL}}=\mathrm{I}_{\mathrm{LIM}}+\left(\mathrm{T}_{\mathrm{OSC}}-200 \mathrm{~ns}\right) \frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{O}}}{\mathrm{~L}} \tag{6}
\end{equation*}
$$

Where $\mathrm{T}_{\text {Osc }}$ is the inverse of switching frequency $\mathrm{f}_{\mathrm{OSc}}$. The 200 ns term represents the minimum off-time of the duty cycle, which ensures enough time for correct operation of the current sensing circuitry. See the plots entitled Peak Current During Current Limit in the Typical Performance Characteristics section.
In order to minimize the time period in which peak inductor current exceeds the current limit threshold, the IC also discharges the soft start capacitor through a fixed $95 \mu \mathrm{~A}$ source. The output of the LM2727/37 internal error amplifier is limited by the voltage on the soft start capacitor. Hence, discharging the soft start capacitor reduces the maximum duty cycle D of the controller. During severe current limit this reduction in duty cycle will reduce the output voltage if the current limit conditions last for an extended time. Output inductor current will be reduced in turn to a flat level equal to the current limit threshold. The third benefit of the soft start capacitor discharge is a smooth, controlled ramp of output voltage when the current limit condition is cleared. During the first few nanoseconds after the low side gate turns on, the low side FET body diode conducts. This causes an additional 0.7 V drop in V_{DS}. The range of V_{DS} is normally much lower. For example, if $\mathrm{R}_{\mathrm{DSON}}$ were $10 \mathrm{~m} \Omega$ and the current through the FET was 10 A , V_{DS} would be 0.1 V . The current limit would see 0.7 V as a 70 A current and enter current limit immediately. Hence current limit is masked during the time it takes for the high side switch to turn off and the low side switch to turn on.

SHUT DOWN

If the shutdown pin $\overline{\mathrm{SD}}$ is pulled low, the LM2742 discharges the soft start capacitor through a MOSFET switch. The high side and low side switches are turned off. The LM2742 remains in this state until SD is released.

DESIGN CONSIDERATIONS

The following is a design procedure for all the components needed to create the circuit shown in Figure 32 in the Example Circuits section, a 5 V in to 1.2 V out converter, capable of delivering 10 A with an efficiency of 85%. The switching frequency is 300 kHz . The same procedures can be followed to create many other designs with varying input voltages, output voltages, and output currents.

Input Capacitor

The input capacitors in a Buck switching converter are subjected to high stress due to the input current waveform, which is a square wave. Hence input caps are selected for their ripple current capability and their ability to withstand the heat generated as that ripple current runs through their ESR. Input rms ripple current is approximately:

$$
\begin{equation*}
I_{\text {rms_rip }}=I_{0} * \sqrt{D(1-D)} \text { png } \tag{7}
\end{equation*}
$$

The power dissipated by each input capacitor is:

$$
\begin{equation*}
P_{D}=\frac{I_{\text {ms-rip }}^{2} * E S R}{n^{2}} \tag{8}
\end{equation*}
$$

Here, n is the number of capacitors, and indicates that power loss in each cap decreases rapidly as the number of input caps increase. The worst-case ripple for a Buck converter occurs during full load, when the duty cycle D $=50 \%$.
In the 5 V to 1.2 V case, $\mathrm{D}=1.2 / 5=0.24$. With a 10 A maximum load the ripple current is 4.3 A . The Sanyo 10MV5600AX aluminum electrolytic capacitor has a ripple current rating of 2.35 A , up to $105^{\circ} \mathrm{C}$. Two such capacitors make a conservative design that allows for unequal current sharing between individual caps. Each capacitor has a maximum ESR of $18 \mathrm{~m} \Omega$ at 100 kHz . Power loss in each device is then 0.05 W , and total loss is 0.1 W . Other possibilities for input and output capacitors include MLCC, tantalum, OSCON, SP, and POSCAPS.

Input Inductor

The input inductor serves two basic purposes. First, in high power applications, the input inductor helps insulate the input power supply from switching noise. This is especially important if other switching converters draw current from the same supply. Noise at high frequency, such as that developed by the LM2742 at 1 MHz operation, could pass through the input stage of a slower converter, contaminating and possibly interfering with its operation.
An input inductor also helps shield the LM2742 from high frequency noise generated by other switching converters. The second purpose of the input inductor is to limit the input current slew rate. During a change from no-load to full-load, the input inductor sees the highest voltage change across it, equal to the full load current times the input capacitor ESR. This value divided by the maximum allowable input current slew rate gives the minimum input inductance:

$$
\begin{equation*}
\mathrm{L}_{\mathrm{in}}=\frac{\Delta \mathrm{V}}{\left(\frac{\mathrm{di}}{\mathrm{dt}}\right)_{\max }} \tag{9}
\end{equation*}
$$

In the case of a desktop computer system, the input current slew rate is the system power supply or "silver box" output current slew rate, which is typically about $0.1 \mathrm{~A} / \mu \mathrm{s}$. Total input capacitor ESR is $9 \mathrm{~m} \Omega$, hence $\Delta \mathrm{V}$ is $10^{*} 0.009=90 \mathrm{mV}$, and the minimum inductance required is $0.9 \mu \mathrm{H}$. The input inductor should be rated to handle the DC input current, which is approximated by:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{IN}-\mathrm{DC}}=\frac{\mathrm{I}_{\mathrm{O}} * \mathrm{D}}{\eta} \tag{10}
\end{equation*}
$$

In this case $\mathrm{I}_{\mathbb{N}-\mathrm{dc}}$ is about 2.8A. One possible choice is the TDK SLF12575T-1R2N8R2, a $1.2 \mu \mathrm{H}$ device that can handle 8.2 Arms, and has a DCR of $7 \mathrm{~m} \Omega$.

Output Inductor

The output inductor forms the first half of the power stage in a Buck converter. It is responsible for smoothing the square wave created by the switching action and for controlling the output current ripple. ($\Delta \mathrm{I}_{0}$) The inductance is chosen by selecting between tradeoffs in output ripple, efficiency, and response time. The smaller the output inductor, the more quickly the converter can respond to transients in the load current. If the inductor value is increased, the ripple through the output capacitor is reduced and thus the output ripple is reduced. As shown in the efficiency calculations, a smaller inductor requires a higher switching frequency to maintain the same level of output current ripple. An increase in frequency can mean increasing loss in the FETs due to the charging and discharging of the gates. Generally the switching frequency is chosen so that conduction loss outweighs switching loss. The equation for output inductor selection is:

$$
\begin{equation*}
L=\frac{v_{\text {in }}-v_{0}}{\Delta_{0} * F_{S W}} * D \tag{11}
\end{equation*}
$$

A good range for $\Delta \mathrm{I}_{\mathrm{o}}$ is 25 to 50% of the output current. In the past, 30% was considered a maximum value for output currents higher than about 2Amps, but as output capacitor technology improves the ripple current can be allowed to increase. Plugging in the values for output current ripple, input voltage, output voltage, switching frequency, and assuming a 40% peak-to-peak output current ripple yields an inductance of $1.5 \mu \mathrm{H}$. The output inductor must be rated to handle the peak current (also equal to the peak switch current), which is (lo $+0.5^{*} \Delta \mathrm{I}_{0}$). This is 12 A for a 10 A design. The Coilcraft D $05022-152 \mathrm{HC}$ is $1.5 \mu \mathrm{H}$, is rated to 15 Arms , and has a DCR of $4 \mathrm{~m} \Omega$.

Output Capacitor

The output capacitor forms the second half of the power stage of a Buck switching converter. It is used to control the output voltage ripple $\left(\Delta \mathrm{V}_{\mathrm{o}}\right)$ and to supply load current during fast load transients.
In this example the output current is 10A and the expected type of capacitor is an aluminum electrolytic, as with the input capacitors. (Other possibilities include ceramic, tantalum, and solid electrolyte capacitors, however the ceramic type often do not have the large capacitance needed to supply current for load transients, and tantalums tend to be more expensive than aluminum electrolytic.) Aluminum capacitors tend to have very high capacitance and fairly low ESR, meaning that the ESR zero, which affects system stability, will be much lower than the switching frequency. The large capacitance means that at switching frequency, the ESR is dominant, hence the type and number of output capacitors is selected on the basis of ESR. One simple formula to find the maximum ESR based on the desired output voltage ripple, $\Delta \mathrm{V}_{0}$ and the designed output current ripple, $\Delta \mathrm{L}_{0}$, is:

$$
\begin{equation*}
\mathrm{ESR}_{\mathrm{MAX}}=\frac{\Delta \mathrm{V}_{\mathrm{o}}}{\Delta \mathrm{I}_{\mathrm{o}}} \tag{12}
\end{equation*}
$$

In this example, in order to maintain a 2% peak-to-peak output voltage ripple and a 40% peak-to-peak inductor current ripple, the required maximum ESR is $6 \mathrm{~m} \Omega$. Three Sanyo 10MV5600AX capacitors in parallel will give an equivalent ESR of $6 \mathrm{~m} \Omega$. The total bulk capacitance of 16.8 mF is enough to supply even severe load transients. Using the same capacitors for both input and output also keeps the bill of materials simple.

MOSFETS

MOSFETS are a critical part of any switching controller and have a direct impact on the system efficiency. In this case the target efficiency is 85% and this is the variable that will determine which devices are acceptable. Loss from the capacitors, inductors, and the LM2742 is detailed in the Efficiency section, and come to about 0.54 W . To meet the target efficiency, this leaves 1.45 W for the FET conduction loss, gate charging loss, and switching loss. Switching loss is particularly difficult to estimate because it depends on many factors. When the load current is more than about 1 or 2 amps , conduction losses outweigh the switching and gate charging losses. This allows FET selection based on the $\mathrm{R}_{\text {Dson }}$ of the FET. Adding the FET switching and gate-charging losses to the equation leaves 1.2 W for conduction losses. The equation for conduction loss is:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{Cnd}}=\mathrm{D}\left(\mathrm{I}_{0}^{2}{ }^{*} \mathrm{R}_{\mathrm{DSON}} * \mathrm{k}\right)+(1-\mathrm{D})\left(I_{0}^{2}{ }^{*} \mathrm{R}_{\mathrm{DSON}} * \mathrm{k}\right) \tag{13}
\end{equation*}
$$

The factor k is a constant which is added to account for the increasing $\mathrm{R}_{\mathrm{DSON}}$ of a FET due to heating. Here, $\mathrm{k}=$ 1.3. The Si4442DY has a typical $R_{\text {DSON }}$ of $4.1 \mathrm{~m} \Omega$. When plugged into the equation for $\mathrm{P}_{\text {CND }}$ the result is a loss of 0.533 W . If this design were for a 5 V to 2.5 V circuit, an equal number of FETs on the high and low sides would be the best solution. With the duty cycle $\mathrm{D}=0.24$, it becomes apparent that the low side FET carries the load current 76% of the time. Adding a second FET in parallel to the bottom FET could improve the efficiency by lowering the effective $\mathrm{R}_{\text {DSON }}$. The lower the duty cycle, the more effective a second or even third FET can be. For a minimal increase in gate charging loss (0.054 W) the decrease in conduction loss is 0.15 W . What was an 85% design improves to 86% for the added cost of one SO-8 MOSFET.

Control Loop Components

The circuit is this design example and the others shown in the Example Circuits section have been compensated to improve their DC gain and bandwidth. The result of this compensation is better line and load transient responses. For the LM2742, the top feedback divider resistor, Rfb2, is also a part of the compensation. For the $10 \mathrm{~A}, 5 \mathrm{~V}$ to 1.2 V design, the values are:
$\mathrm{Cc} 1=4.7 \mathrm{pF} 10 \%, \mathrm{Cc} 2=1 \mathrm{nF} 10 \%, \mathrm{Rc}=229 \mathrm{k} \Omega 1 \%$. These values give a phase margin of 63° and a bandwidth of 29.3 kHz .

Support Capacitors and Resistors

The Cinx capacitors are high frequency bypass devices, designed to filter harmonics of the switching frequency and input noise. Two $1 \mu \mathrm{~F}$ ceramic capacitors with a sufficient voltage rating (10 V for the Circuit of Figure 32) will work well in almost any case.
R_{IN} and $\mathrm{C}_{\mathbb{I N}}$ are standard filter components designed to ensure smooth DC voltage for the chip supply. Depending on noise, R_{IN} should be 10 to 100Ω, and $\mathrm{C}_{\mathbb{I N}}$ should be between 0.1 and $2.2 \mu \mathrm{~F} . \mathrm{C}_{\text {Bоот }}$ is the bootstrap capacitor, and should be $0.1 \mu \mathrm{~F}$. (In the case of a separate, higher supply to the BOOT pin, this $0.1 \mu \mathrm{~F}$ cap can be used to bypass the supply.) Using a Schottky device for the bootstrap diode allows the minimum drop for both high and low side drivers. The On Semiconductor BAT54 or MBR0520 work well.
Rp is a standard pull-up resistor for the open-drain power good signal, and should be $10 \mathrm{k} \Omega$. If this feature is not necessary, it can be omitted.
R_{CS} is the resistor used to set the current limit. Since the design calls for a peak current magnitude (lo +0.5 * $\Delta \mathrm{I}_{\mathrm{o}}$) of 12 A , a safe setting would be 15A. (This is well below the saturation current of the output inductor, which is 25A.) Following the equation from the Current Limit section, use a $3.3 \mathrm{k} \Omega$ resistor.
$\mathrm{R}_{\text {FADJ }}$ is used to set the switching frequency of the chip. Following the equation in the Theory of Operation section, the closest 1% tolerance resistor to obtain $\mathrm{f}_{\mathrm{Sw}}=300 \mathrm{kHz}$ is $88.7 \mathrm{k} \Omega$.
$\mathrm{C}_{S S}$ depends on the users requirements. Based on the equation for $\mathrm{C}_{s s}$ in the Theory of Operation section, for a 3 ms delay, a 12 nF capacitor will suffice.

EFFICIENCY CALCULATIONS

A reasonable estimation of the efficiency of a switching controller can be obtained by adding together the loss is each current carrying element and using the equation:

$$
\begin{equation*}
\eta=\frac{P_{0}}{P_{0}+P_{\text {total-loss }}} \tag{14}
\end{equation*}
$$

The following shows an efficiency calculation to complement the Circuit of Figure 32. Output power for this circuit is $1.2 \mathrm{~V} \times 10 \mathrm{~A}=12 \mathrm{~W}$.

Chip Operating Loss

$$
\begin{equation*}
P_{P Q}=I_{Q-V C c}{ }^{*} V_{C C} \tag{15}
\end{equation*}
$$

$2 \mathrm{~mA} \times 5 \mathrm{~V}=0.01 \mathrm{~W}$

FET Gate Charging Loss

$$
\begin{equation*}
\mathrm{P}_{\mathrm{GC}}=\mathrm{n} * \mathrm{~V}_{\mathrm{CC}} * \mathrm{Q}_{\mathrm{GS}} * \mathrm{f}_{\mathrm{OSC}} \tag{16}
\end{equation*}
$$

The value n is the total number of FETs used. The Si4442DY has a typical total gate charge, Q_{GS}, of 36 nC and an $r_{\text {ds-on }}$ of $4.1 \mathrm{~m} \Omega$. For a single FET on top and bottom: $2^{*} 5^{*} 36 \mathrm{E}^{-9 *} 300,000=0.108 \mathrm{~W}$

FET Switching Loss

$$
\begin{equation*}
P_{\text {sw }}=0.5 * V_{\text {in }} * I_{0} *\left(t_{r}+t_{\mathrm{f}}\right)^{*} \text { fosc } \tag{17}
\end{equation*}
$$

The Si4442DY has a typical rise time t_{r} and fall time t_{f} of 11 and 47 ns , respectively. $0.5^{*} 5^{*} 10 * 58 \mathrm{E}^{-9 *} 300,000=$ 0.435W

FET Conduction Loss

$$
\begin{equation*}
\mathrm{P}_{\mathrm{Cn}}=0.533 \mathrm{~W} \tag{18}
\end{equation*}
$$

Input Capacitor Loss

$$
\begin{align*}
& P_{\text {Cin }}=\frac{I_{\text {Ims-rip }}^{2} * E S R}{n} \tag{19}\\
& I_{\text {INrms-rip }}=I_{O} * \sqrt{D(1-D)} \tag{20}
\end{align*}
$$

$4.28^{2 *} 0.018 / 2=0.164 \mathrm{~W}$

Input Inductor Loss

$$
\begin{align*}
& \mathrm{P}_{\text {Lin }}=I_{\text {in }}^{2} * \text { DCR }_{\text {input-L }} \tag{21}\\
& I_{\text {IN }}=\frac{I_{0} * D}{\eta_{\text {est'd }}} \tag{22}
\end{align*}
$$

$2.82^{2 *} 0.007=0.055 \mathrm{~W}$

Output Inductor Loss

$$
\begin{equation*}
P_{\text {Lout }}=I_{0}^{2} * D C R_{\text {output-L }} \tag{23}
\end{equation*}
$$

$10^{2 *} 0.004=0.4 \mathrm{~W}$

System Efficiency

$$
\begin{equation*}
\frac{12}{22+1.7}=87.5 \% \tag{24}
\end{equation*}
$$

Example Circuits

Figure 31. 5V-16V to $3.3 \mathrm{~V}, 10 \mathrm{~A}, 300 \mathrm{kHz}$
This circuit and the one featured on the front page have been designed to deliver high current and high efficiency in a small package, both in area and in height The tallest component in this circuit is the inductor L1, which is 6 mm tall. The compensation has been designed to tolerate input voltages from 5 to 16 V .

Figure 32. 5V to $1.2 \mathrm{~V}, 10 \mathrm{~A}, 300 \mathrm{kHz}$
This circuit design, detailed in the Design Considerations section, uses inexpensive aluminum capacitors and off-the-shelf inductors. It can deliver 10A at better than 85% efficiency. Large bulk capacitance on input and output ensure stable operation.

Figure 33. 5 V to $1.8 \mathrm{~V}, 3 \mathrm{~A}, 600 \mathrm{kHz}$
The example circuit of Figure 33 has been designed for minimum component count and overall solution size. A switching frequency of 600 kHz allows the use of small input/output capacitors and a small inductor. The availability of separate 5 V and 12 V supplies (such as those available from desk-top computer supplies) and the low current further reduce component count. Using the 12V supply to power the MOSFET drivers eliminates the bootstrap diode, D1. At low currents, smaller FETs or dual FETs are often the most efficient solutions. Here, the Si4826DY, an asymmetric dual FET in an SO-8 package, yields 92% efficiency at a load of 2A.

Figure 34. 3.3 V to $0.8 \mathrm{~V}, 5 \mathrm{~A}, 500 \mathrm{kHz}$
The circuit of Figure 34 demonstrates the LM2742 delivering a low output voltage at high efficiency (87\%). A separate 5 V supply is required to run the chip, however the input voltage can be as low as 2.2

Figure 35. 1.8V and 3.3V, 1A, 1.4MHz, Simultaneous

The circuits in Figure 35 are intended for ADSL applications, where the high switching frequency keeps noise out of the data transmission range. In this design, the 1.8 and 3.3 V outputs come up simultaneously by using the same softstart capacitor. Because two current sources now charge the same capacitor, the capacitance must be doubled to achieve the same softstart time. (Here, 40 nF is used to achieve a 5 ms softstart time.) A common softstart capacitor means that, should one circuit enter current limit, the other circuit will also enter current limit. The additional compensation components Rc2 and Cc3 are needed for the low ESR, all ceramic output capacitors, and the wide (3x) range of Vin.

Figure 36. 12V Unregulated to $3.3 \mathrm{~V}, 3 \mathrm{~A}, 750 \mathrm{kHz}$
This circuit shows the LM2742 paired with a cost effective solution to provide the 5 V chip power supply, using no extra components other than the LM78L05 regulator itself. The input voltage comes from a 'brick' power supply which does not regulate the 12 V line tightly. Additional, inexpensive 10 uF ceramic capacitors (Cinx and Cox) help isolate devices with sensitive databands, such as DSL and cable modems, from switching noise and harmonics.

Figure 37. 12 V to $5 \mathrm{~V}, 1.8 \mathrm{~A}, 100 \mathrm{kHz}$
In situations where low cost is very important, the LM2742 can also be used as an asynchronous controller, as shown in the above circuit. Although a a schottky diode in place of the bottom FET will not be as efficient, it will cost much less than the FET. The 5V at low current needed to run the LM2742 could come from a zener diode or inexpensive regulator, such as the one shown in Figure 36. Because the LM2742 senses current in the low side MOSFET, the current limit feature will not function in an asynchronous design. The ISEN pin should be left open in this case.

Table 1. Bill of Materials for Typical Application Circuit (Figure 1)

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
U1	LM2742	Synchronous Controller	TSSOP-14	TSSOP-14	1	NSC
Q1, Q2	Si4884DY	N-MOSFET	SO-8	$30 \mathrm{~V}, 13 \mathrm{~m} \Omega, 15 \mathrm{nC}$	1	Vishay
L1	RLF7030T-1R5N6R1	Inductor	$7.1 \times 7.1 \times 3.2 \mathrm{~mm}$	$1.5 \mu \mathrm{H}, 6.1 \mathrm{~A} 9.6 \mathrm{~m} \Omega$	1	TDK
Cin1, Cin2	C2012X5R1J106M	MLCC	0805	$10 \mu \mathrm{~F} 6.3 \mathrm{~V}$	2	TDK
Cinx	C3216X7R1E105K	Capacitor	1206	$1 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Co1, Co2	6MV2200WG	AL-E	$10 \mathrm{~mm} \mathrm{D} \mathrm{20mm} \mathrm{H}$	$2200 \mu \mathrm{~F} 6.3 \mathrm{~V} 125 \mathrm{~m} \Omega$	2	Sanyo
Cboot	VJ1206X104XXA	Capacitor	1206	$0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	Vishay
Cin	C3216X7R1E225K	Capacitor	1206	$2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Css	VJ1206X123KXX	Capacitor	1206	$12 \mathrm{nF}, 25 \mathrm{~V}$	1	Vishay
Cc1	VJ1206A2R2KXX	Capacitor	1206	$2.2 \mathrm{pF} 10 \%$	1	Vishay
Cc2	VJ1206A181KXX	Capacitor	1206	$180 \mathrm{pF} 10 \%$	1	Vishay
Rin	CRCW1206100J	Resistor	1206	$10 \Omega 5 \%$	1	Vishay
Rfadj	CRCW12066342F	Resistor	1206	$63.4 \mathrm{k} \Omega 1 \%$	1	Vishay
Rc1	CRCW12063923F	Resistor	1206	$392 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb1	CRCW12061002F	Resistor	1206	$10 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb2	CRCW12061002F	Resistor	1206	$10 \mathrm{k} \Omega 1 \%$	1	Vishay
Rcs	CRCW1206222J	Resistor	1206	$2.2 \mathrm{k} \Omega 5 \%$	1	Vishay

Table 2. Bill of Materials for Circuit of Figure 31 (Identical to BOM for 1.5 V except as noted below)

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
L1	RLF12560T-2R7N110	Inductor	$12.5 \times 12.8 \times 6 \mathrm{~mm}$	$2.7 \mu \mathrm{H}, 14.4 \mathrm{~A} 4.5 \mathrm{~m} \Omega$	1	TDK
Co1, Co2, Co3, Co4	10TPB100M	POSCAP	$7.3 \times 4.3 \times 2.8 \mathrm{~mm}$	$100 \mu \mathrm{~F} 10 \mathrm{~V} 1.9 \mathrm{Arms}$	4	Sanyo
Cc1	VJ1206A6R8KXX	Capacitor	1206	$6.8 \mathrm{pF} 10 \%$	1	Vishay
Cc2	VJ1206A271KXX	Capacitor	1206	$270 \mathrm{pF} 10 \%$	1	Vishay
Cc3	VJ1206A471KXX	Capacitor	1206	$470 \mathrm{pF} 10 \%$	1	Vishay
Rc2	CRCW12068451F	Resistor	1206	$8.45 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb1	CRCW12061102F	Resistor	1206	$11 \mathrm{k} \Omega 1 \%$	1	Vishay

Table 3. Bill of Materials for Circuit of Figure 32

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
U1	LM2742	Synchronous Controller	TSSOP-14		1	NSC
Q1	Si4442DY	N-MOSFET	SO-8	$30 \mathrm{~V}, 4.1 \mathrm{~m} \Omega, @ 4.5 \mathrm{~V}, 36 \mathrm{nC}$	1	Vishay
Q2	Si4442DY	N-MOSFET	SO-8	$30 \mathrm{~V}, 4.1 \mathrm{~m} \Omega, @ 4.5 \mathrm{~V}, 36 \mathrm{nC}$	1	Vishay
D1	BAT-54	Schottky Diode	SOT-23	30 V	1	Vishay
Lin	SLF12575T-1R2N8R2	Inductor	$12.5 \times 12.5 \times 7.5 \mathrm{~mm}$	$12 \mu \mathrm{H}, 8.2 \mathrm{~A}, 6.9 \mathrm{~m} \Omega$	1	Coilcraft
L1	D05022-152HC	Inductor	$22.35 \times 16.26 \times 8 \mathrm{~mm}$	$1.5 \mu \mathrm{H}, 15 \mathrm{~A}, 4 \mathrm{~m} \Omega$	1	Coilcraft
Cin1, Cin2	10MV5600AX	Aluminum Electrolytic	16 mm D 25 mm H	$5600 \mu \mathrm{~F} 10 \mathrm{~V} 2.35 \mathrm{Arms}$	2	Sanyo
Cinx	C3216X7R1E105K	Capacitor	1206	$1 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Co1, Co2, Co3	10MV5600AX	Aluminum Electrolytic	16 mm D 25 mm H	$5600 \mu \mathrm{~F} 10 \mathrm{~V} 2.35 \mathrm{Arms}$	2	Sanyo
Cboot	VJ1206X104XXA	Capacitor	1206	$0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	Vishay
Cin	C3216X7R1E225K	Capacitor	1206	$2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Css	VJ1206X123KXX	Capacitor	1206	$12 \mathrm{nF}, 25 \mathrm{~V}$	1	Vishay
Cc1	VJ1206A4R7KXX	Capacitor	1206	$4.7 \mathrm{pF} 10 \%$	1	Vishay

LM2742

Table 3. Bill of Materials for Circuit of Figure 32 (continued)

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
Cc2	VJ1206A102KXX	Capacitor	1206	$1 \mathrm{nF} 10 \%$	1	Vishay
Rin	CRCW1206100J	Resistor	1206	$10 \Omega 5 \%$	1	Vishay
Rfadj	CRCW12068872F	Resistor	1206	$88.7 \mathrm{k} \Omega 1 \%$	1	Vishay
Rc1	CRCW12062293F	Resistor	1206	$229 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb1	CRCW12064991F	Resistor	1206	$4.99 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb2	CRCW12064991F	Resistor	1206	$4.99 \mathrm{k} \Omega 1 \%$	1	Vishay
Rcs	CRCW1206152J	Resistor	1206	$1.5 \mathrm{k} \Omega 5 \%$	1	Vishay

Table 4. Bill of Materials for Circuit of Figure 33

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
U1	LM2742	Synchronous Controller	TSSOP-14		1	NSC
Q1/Q2	Si4826DY	Asymetric Dual N-MOSFET	SO-8	$30 \mathrm{~V}, 24 \mathrm{~m} \Omega / 8 \mathrm{nC}$ Top $16.5 \mathrm{~m} \Omega / 15 \mathrm{nC}$	1	Vishay
L1	DO3316P-222	Inductor	$12.95 \times 9.4 \times 5.21 \mathrm{~mm}$	$2.2 \mu \mathrm{H}, 6.1 \mathrm{~A}, 12 \mathrm{~m} \Omega$	1	Coilcraft
Cin1	10TPB100ML	POSCAP	$7.3 \times 4.3 \times 3.1 \mathrm{~mm}$	$100 \mu \mathrm{~F} 10 \mathrm{~V} 1.9 \mathrm{Arms}$	1	Sanyo
Co1	4TPB220ML	POSCAP	$7.3 \times 4.3 \times 3.1 \mathrm{~mm}$	$220 \mu \mathrm{~F} 4 \mathrm{~V} 1.9 \mathrm{Arms}$	1	Sanyo
Cc	C3216X7R1E105K	Capacitor	1206	$1 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Cin	C3216X7R1E225K	Capacitor	1206	$2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Css	VJ1206X123KXX	Capacitor	1206	$12 \mathrm{nF}, 25 \mathrm{~V}$	1	Vishay
Cc1	VJ1206A100KXX	Capacitor	1206	$10 \mathrm{pF} 10 \%$	1	Vishay
Cc2	VJ1206A561KXX	Capacitor	1206	$560 \mathrm{pF} 10 \%$	1	Vishay
Rin	CRCW1206100J	Resistor	1206	$10 \Omega 5 \%$	1	Vishay
Rfadj	CRCW12064222F	Resistor	1206	$42.2 \mathrm{k} \Omega 1 \%$	1	Vishay
Rc1	CRCW12065112F	Resistor	1206	$51.1 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb1	CRCW12062491F	Resistor	1206	$2.49 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb2	CRCW12064991F	Resistor	1206	$4.99 \mathrm{k} \Omega 1 \%$	1	Vishay
Rcs	CRCW1206272J	Resistor	1206	$2.7 \mathrm{k} \Omega 5 \%$	1	Vishay

Table 5. Bill of Materials for Circuit of Figure 34

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
U1	LM2742	Synchronous Controller	TSSOP-14		1	NSC
Q1	Si4884DY	N-MOSFET	SO-8	$30 \mathrm{~V}, 13.5 \mathrm{~m} \Omega, @ 4.5 \mathrm{~V}$ 15.3 nC	1	Vishay
Q2	Si4884DY	N-MOSFET	SO-8	$30 \mathrm{~V}, 13.5 \mathrm{~m} \Omega, @ 4.5 \mathrm{~V}$ 15.3 nC	1	Vishay
D1	BAT-54	Schottky Diode	SOT-23	30 V	1	Vishay
Lin	P1166.102T	Inductor	$7.29 \times 7.293 .51 \mathrm{~mm}$	$1 \mu \mathrm{H}, 11 \mathrm{~A} \mathrm{3.7m} \mathrm{\Omega}$	1	Pulse
L1	P1168.102T	Inductor	$12 \times 12 \times 4.5 \mathrm{~mm}$	$1 \mu \mathrm{H}, 11 \mathrm{~A}, 3.7 \mathrm{~m} \Omega$	1	Pulse
Cin1	10MV5600AX	Aluminum Electrolytic	16 mm D 25 mm H	$5600 \mu \mathrm{~F} 10 \mathrm{~V} 2.35 \mathrm{Arms}$	1	Sanyo
Cinx	C3216X7R1E105K	Capacitor	1206	$14 \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Co1, Co2, Co3	16MV4700WX	Aluminum Electrolytic	$12.5 \mathrm{~mm} \mathrm{D} \mathrm{30mm} \mathrm{H}$	$4700 \mu \mathrm{~F} \mathrm{16V} \mathrm{2.8Arms}$	2	Sanyo
Cboot	VJ1206X104XXA	Capacitor	1206	$0.1 \mu \mathrm{FF}, 25 \mathrm{~V}$	1	Vishay
Cin	C3216X7R1E225K	Capacitor	1206	$2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Css	VJ1206X123KXX	Capacitor	1206	$12 \mathrm{nF}, 25 \mathrm{~V}$	1	Vishay
Cc1	VJ1206A4R7KXX	Capacitor	1206	$4.7 \mathrm{pF} 10 \%$	1	Vishay

Table 5. Bill of Materials for Circuit of Figure 34 (continued)

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
Cc2	VJ1206A681KXX	Capacitor	1206	$680 \mathrm{pF} 10 \%$	1	Vishay
Rin	CRCW1206100J	Resistor	1206	$10 \Omega 5 \%$	1	Vishay
Rfadj	CRCW12064992F	Resistor	1206	$49.9 \mathrm{k} \Omega 1 \%$	1	Vishay
Rc1	CRCW12061473F	Resistor	1206	$147 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb1	CRCW12061492F	Resistor	1206	$14.9 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb2	CRCW12064991F	Resistor	1206	$4.99 \mathrm{k} \Omega 1 \%$	1	Vishay
Rcs	CRCW1206332J	Resistor	1206	$3.3 \mathrm{k} \Omega 5 \%$	1	Vishay

Table 6. Bill of Materials for Circuit of Figure 35

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
U1	LM2742	Synchronous Controller	TSSOP-14		1	NSC
Q1/Q2	Si4826DY	Assymetric Dual N-MOSFET	SO-8	$30 \mathrm{~V}, 24 \mathrm{~m} \Omega / 8 \mathrm{nC}$ Top $16.5 \mathrm{~m} \Omega / 15 \mathrm{nC}$	1	Vishay
D1	BAT-54	Schottky Diode	SOT-23	30V	1	Vishay
Lin	RLF7030T-1R0N64	Inductor	$6.8 \times 7.1 \times 3.2 \mathrm{~mm}$	$1 \mu \mathrm{H}, 6.4 \mathrm{~A}, 7.3 \mathrm{~m} \Omega$	1	TDK
L1	RLF7030T-3R3M4R1	Inductor	$6.8 \times 7.1 \times 3.2 \mathrm{~mm}$	$3.3 \mu \mathrm{H}, 4.1 \mathrm{~A}, 17.4 \mathrm{~m} \Omega$	1	TDK
Cin1	C4532X5R1E156M	MLCC	1812	$15 \mu \mathrm{~F} \mathrm{25V} 3.3 \mathrm{Arms}$	1	Sanyo
Co1	C4532X5R1E156M	MLCC	1812	$15 \mu \mathrm{~F} 25 \mathrm{~V} 3.3 \mathrm{Arms}$	1	Sanyo
Cboot	VJ1206X104XXA	Capacitor	1206	$0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Cin	C3216X7R1E225K	Capacitor	1206	$2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Css	VJ1206X393KXX	Capacitor	1206	$39 \mathrm{nF,25V}$	1	Vishay
Cc1	VJ1206A220KXX	Capacitor	1206	$22 \mathrm{pF} \mathrm{10} \mathrm{\%}$	1	Vishay
Cc2	VJ1206A681KXX	Capacitor	1206	$680 \mathrm{pF} 10 \%$	1	Vishay
Cc3	VJ1206A681KXX	Capacitor	1206	$680 \mathrm{pF} 10 \%$	1	Vishay
Rin	CRCW1206100J	Resistor	1206	$10 \Omega 5 \%$	1	Vishay
Rfadj	CRCW12061742F	Resistor	1206	$17.4 \mathrm{k} \Omega 1 \%$	1	Vishay
Rc1	CRCW12061072F	Resistor	1206	$10.7 \mathrm{k} \Omega 1 \%$	1	Vishay
Rc2	CRCW120666R5F	Resistor	1206	$66.5 \Omega 1 \%$	1	Vishay
Rfb1	CRCW12064991F	Resistor	1206	$4.99 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb2	CRCW12061002F	Resistor	1206	$10 \mathrm{k} \Omega 1 \%$	1	Vishay
Rcs	CRCW1206152J	Resistor	1206	$1.5 \mathrm{k} \Omega 5 \%$	1	Vishay

Table 7. Bill of Materials for 3.3V Circuit of Figure 35 (Identical to BOM for 1.8 V except as noted below)

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
L1	RLF7030T-4R7M3R4	Inductor	$6.8 \times 7.1 \times 3.2 \mathrm{~mm}$	$4.7 \mu \mathrm{H}, 3.4 \mathrm{~A}, 26 \mathrm{~m} \Omega$	1	TDK
Cc1	VJ1206A270KXX	Capacitor	1206	$27 \mathrm{pF} 10 \%$	1	Vishay
Cc2	VJ1206X102KXX	Capacitor	1206	$10 \% 10 \%$	1	Vishay
Cc3	VJ1206A821KXX	Capacitor	1206	$820 \mathrm{pF} 10 \%$	1	Vishay
Rc1	CRCW12061212F	Resistor	1206	$12.1 \mathrm{k} \Omega 1 \%$	1	Vishay
Rc2	CRCW12054R9F	Resistor	1206	$54.9 \Omega 1 \%$	1	Vishay
Rfb1	CRCW12062211F	Resistor	1206	$2.21 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb2	CRCW12061002F	Resistor	1206	$10 \mathrm{k} \Omega 1 \%$	1	Vishay

Table 8. Bill of Materials for Circuit of Figure 36

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
U1	LM2742	Synchronous Controller	TSSOP-14		1	NSC
U2	LM78L05	Voltage Regulator	SO-8		1	NSC
Q1/Q2	Si4826DY	Assymetric Dual NMOSFET	SO-8	$30 \mathrm{~V}, 24 \mathrm{~m} \Omega / 8 \mathrm{nC}$ Top $16.5 \mathrm{~m} \Omega / 15 \mathrm{nC}$	1	Vishay
D1	BAT-54	Schottky Diode	SOT-23	30 V	1	Vishay
Lin	RLF7030T-1R0N64	Inductor	$6.8 \times 7.1 \times 3.2 \mathrm{~mm}$	$1 \mu \mathrm{H}, 6.4 \mathrm{~A}, 7.3 \mathrm{~m} \Omega$	1	TDK
L1	SLF12565T-4R2N5R5	Inductor	$12.5 \times 12.5 \times 6.5 \mathrm{~mm}$	$4.2 \mu \mathrm{H}, 5.5 \mathrm{~A}, 15 \mathrm{~m} \Omega$	1	TDK
Cin1	16MV680WG	Al-E	D: $10 \mathrm{~mm} \mathrm{~L}: 12.5 \mathrm{~mm}$	680んF 16V 3.4Arms	1	Sanyo
Cinx	C3216X5R1C106M	MLCC	1210	$10 \mu \mathrm{~F} 16 \mathrm{~V} 3.4 \mathrm{Arms}$	1	TDK
Co1 Co2	16MV680WG	MLCC	1812	154F 25V 3.3Arms	1	Sanyo
Cox	C3216X5R10J06M	MLCC	1206	$10 \mu \mathrm{~F} 6.3 \mathrm{~V} 2.7 \mathrm{~A}$		TDK
Cboot	VJ1206X104XXA	Capacitor	1206	$0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	Vishay
Cin	C3216X7R1E225K	Capacitor	1206	$2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Css	VJ1206X123KXX	Capacitor	1206	$12 \mathrm{nF}, 25 \mathrm{~V}$	1	Vishay
Cc1	VJ1206A8R2KXX	Capacitor	1206	8.2pF 10\%	1	Vishay
Cc2	VJ1206X102KXX	Capacitor	1206	1nF 10\%	1	Vishay
Cc3	VJ1206X472KXX	Capacitor	1206	4.7nF 10\%	1	Vishay
Rfadj	CRCW12063252F	Resistor	1206	$32.5 \mathrm{k} \Omega 1 \%$	1	Vishay
Rc1	CRCW12065232F	Resistor	1206	52.3k 1%	1	Vishay
Rc2	CRCW120662371F	Resistor	1206	2.37 1%	1	Vishay
Rfb1	CRCW12062211F	Resistor	1206	$2.21 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb2	CRCW12061002F	Resistor	1206	10kS 1\%	1	Vishay
Rcs	CRCW1206202J	Resistor	1206	2k $\Omega 5 \%$	1	Vishay

Table 9. Bill of Materials for Circuit of Figure 37

ID	Part Number	Type	Size	Parameters	Qty.	Vendor
U1	LM2742	Synchronous Controller	TSSOP-14		1	NSC
Q1	Si4894DY	N-MOSFET	SO-8	$30 \mathrm{~V}, 15 \mathrm{~m} \Omega, 11.5 \mathrm{nC}$	1	Vishay
D2	MBRS330T3	Schottky Diode	SO-8	$30 \mathrm{~V}, 3 \mathrm{~A}$	1	ON
L1	SLF12565T-470M2R4	Inductor	$12.5 \times 12.8 \times 4.7 \mathrm{~mm}$	$47 \mu \mathrm{H}, 2.7 \mathrm{~A} 53 \mathrm{~m} \Omega$	1	TDK
D1	MBR0520	Schottky Diode	1812	20 V 0.5 A	1	ON
Cin1	16MV680WG	Al-E	1206	$680 \mu \mathrm{~F}, 16 \mathrm{~V}, 1.54 \mathrm{Arms}$	1	Sanyo
Cinx	C3216X5R1C106M	MLCC	1206	$10 \mu \mathrm{~F}, 16 \mathrm{~V}, 3.4 \mathrm{Arms}$	1	TDK
Co1, Co2	16MV680WG	Al-E	D: $10 \mathrm{~mm} \mathrm{L:} 12.5 \mathrm{~mm}$	$680 \mu \mathrm{~F} 16 \mathrm{~V} 26 \mathrm{~m} \Omega$	2	Sanyo
Cox	C3216X5R10J06M	MLCC	1206	$10 \mu \mathrm{~F}, 6.3 \mathrm{~V} 2.7 \mathrm{~A}$	1	TDK
Cboot	VJ1206X104XXA	Capacitor	1206	$0.1 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	Vishay
Cin	C3216X7R1E225K	Capacitor	1206	$2.2 \mu \mathrm{~F}, 25 \mathrm{~V}$	1	TDK
Css	VJ1206X123KXX	Capacitor	1206	$12 \mathrm{nF}, 25 \mathrm{~V}$	1	Vishay
Cc1	VJ1206A561KXX	Capacitor	1206	$56 \mathrm{pF} 10 \%$	1	Vishay
Cc2	VJ1206X392KXX	Capacitor	1206	$3.9 \mathrm{nF} 10 \%$	1	Vishay
Cc3	VJ1206X223KXX	Capacitor	1206	$22 \mathrm{nF} 10 \%$	1	Vishay
Rfadj	CRCW12062673F	Resistor	1206	$267 \mathrm{k} \Omega 1 \%$	1	Vishay
Rc1	CRCW12066192F	Resistor	1206	$61.9 \mathrm{k} \Omega 1 \%$	1	Vishay
Rc2	CRCW12067503F	Resistor	1206	$750 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb1	CRCW12061371F	Resistor	1206	$1.37 \mathrm{k} \Omega 1 \%$	1	Vishay
Rfb2	CRCW12061002F	Resistor	1206	$10 \mathrm{k} \Omega 1 \%$	1	Vishay
Rcs	CRCW1206122F	Resistor	1206	$1.2 \mathrm{k} \Omega 5 \%$	1	Vishay

REVISION HISTORY

- Changed layout of National Data Sheet to TI format 25

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking $(4 / 5)$	Samples
LM2742MTC/NOPB	ACTIVE	TSSOP	PW	14	94	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU \| CU SN	Level-1-260C-UNLIM	-40 to 125	$\begin{aligned} & 2742 \\ & \text { MTC } \end{aligned}$	Samples
LM2742MTCX/NOPB	ACTIVE	TSSOP	PW	14	2500	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU \| CU SN	Level-1-260C-UNLIM	-40 to 125	$\begin{aligned} & 2742 \\ & \text { MTC } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

[^1]
TAPE AND REEL INFORMATION

*All dimensions are nominal

| Device | Package
 Type | Package
 Drawing | Pins | SPQ | Reel
 Diameter
 $(\mathbf{m m})$ | Reel
 Width
 W1 $(\mathbf{m m})$ | A0
 $(\mathbf{m m})$ | B0
 $(\mathbf{m m})$ | K0
 $(\mathbf{m m})$ | P1
 $(\mathbf{m m})$ | W
 $(\mathbf{m m})$ | Pin1
 Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LM2742MTCX/NOPB | TSSOP | PW | 14 | 2500 | 330.0 | 12.4 | 6.95 | 8.3 | 1.6 | 8.0 | 12.0 | Q1 |

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2742MTCX/NOPB	TSSOP	PW	14	2500	367.0	367.0	35.0

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.

Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
(D) Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in Tl's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of Tl components or services with statements different from or beyond the parameters stated by Tl for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, Tl's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	$\underline{\text { microcontroller.ti.com }}$	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessco		

[^0]: Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
 Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[^1]: In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

